Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nat Commun ; 15(1): 8117, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284801

RESUMEN

Reproducibility of computational research is often challenging despite established guidelines and best practices. Translating these guidelines into practical applications remains difficult. Here, we present ENCORE, an approach to enhance transparency and reproducibility by guiding researchers in how to structure and document a computational project. ENCORE builds on previous efforts in computational reproducibility and integrates all project components into a standardized file system structure. It utilizes pre-defined files as documentation templates, leverages GitHub for software versioning, and includes an HTML-based navigator. ENCORE is designed to be agnostic to the type of computational project, data, programming language, and ICT infrastructure, and does not rely on specific software tools. We also share our group's experience using ENCORE, highlighting that the most significant challenge to the routine adoption of approaches like ours is the lack of incentives to motivate researchers to dedicate sufficient time and effort to ensure reproducibility.

2.
Atherosclerosis ; 397: 118559, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186910

RESUMEN

BACKGROUND AND AIMS: Anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitides (AAV) is associated with an increased cardiovascular risk, particularly the myeloperoxidase AAV serotype (MPO-AAV). Distinct alterations in monocyte phenotypes may cause accelerated atherosclerotic disease in AAV. METHODS: A cohort including 43 AAV patients and 19 healthy controls was included for downstream analyses. Extensive phenotyping of monocytes and monocyte-derived macrophages was performed using bulk RNA-sequencing and flow cytometry. An in vitro transendothelial migration assay reflecting intrinsic adhesive and migratory capacities of monocytes was employed. Subsequent sub-analyses were performed to investigate differences between serological subtypes. RESULTS: Monocyte subset analysis showed increased classical monocytes during active disease, whereas non-classical monocytes were decreased compared to healthy controls (HC). RNA-sequencing revealed upregulation of distinct inflammatory pathways and lipid metabolism-related markers in monocytes of active AAV patients. No differences were detected in the intrinsic monocyte adhesion and migration capacity. Compared to proteinase-3(PR3)-AAV, monocytes of MPO-AAV patients in remission expressed genes related to inflammation, coagulation, platelet-binding and interferon signalling, whereas the expression of chemokine receptors indicative of acute inflammation and monocyte extravasation (i.e., CCR2 and CCR5) was increased in monocytes of PR3-AAV patients. During active disease, PR3-AAV was linked with elevated serum CRP and increased platelet counts compared to MPO-AAV. CONCLUSIONS: These findings highlight changes in monocyte subset composition and activation, but not in the intrinsic migration capacity of AAV monocytes. MPO-AAV monocytes are associated with sustained upregulation of inflammatory genes, whereas PR3-AAV monocytes exhibit chemokine receptor upregulation. These molecular changes may play a role in elevating cardiovascular risk as well as in the underlying pathophysiology of AAV.

3.
Blood Adv ; 8(17): 4633-4646, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39042920

RESUMEN

ABSTRACT: Autologous T-cell-based therapies, such as chimeric antigen receptor (CAR) T-cell therapy, exhibit low success rates in chronic lymphocytic leukemia (CLL) and correlate with a dysfunctional T-cell phenotype observed in patients. Despite various proposed mechanisms of T-cell dysfunction in CLL, the specific CLL-derived factors responsible remain unidentified. This study aimed to investigate the mechanisms through which CLL cells suppress CAR T-cell activation and function. We found that CLL-derived T cells get activated, albeit in a delayed fashion, and specifically that restimulation of CAR T cells in the presence of CLL cells causes impaired cytokine production and reduced proliferation. Notably, coculture of T cells with CD40-activated CLL cells did not lead to T-cell dysfunction, and this required direct cell contact between the CD40-stimulated CLL cells and T cells. Inhibition of kinases involved in the CD40 signaling cascade revealed that the Spare Respiratory Capacity (SRC) kinase inhibitor dasatinib prevented rescue of T-cell function independent of CD40-mediated increased levels of costimulatory and adhesion ligands on CLL cells. Transcriptome profiling of CD40-stimulated CLL cells with or without dasatinib identified widespread differential gene expression. Selecting for surface receptor genes revealed CD40-mediated downregulation of the Sialic acid-binding Ig-like lectin 10 (Siglec-10) ligands CD24 and CD52, which was prevented by dasatinib, suggesting a role for these ligands in functional T-cell suppression in CLL. Indeed, blocking CD24 and/or CD52 markedly reduced CAR T-cell dysfunction upon coculture with resting CLL cells. These results demonstrated that T cells derived from CLL patients can be reinvigorated by manipulating CLL-T-cell interactions. Targeting CD24- and CD52-mediated CLL-T-cell interaction could be a promising therapeutic strategy to enhance T-cell function in CLL.


Asunto(s)
Antígeno CD24 , Antígeno CD52 , Leucemia Linfocítica Crónica de Células B , Linfocitos T , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/terapia , Antígeno CD52/metabolismo , Linfocitos T/metabolismo , Linfocitos T/inmunología , Antígeno CD24/metabolismo , Activación de Linfocitos/inmunología , Ligandos , Receptores Quiméricos de Antígenos/metabolismo
4.
Nat Aging ; 4(5): 681-693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609524

RESUMEN

Studies in preclinical models suggest that complex lipids, such as phospholipids, play a role in the regulation of longevity. However, identification of universally conserved complex lipid changes that occur during aging, and how these respond to interventions, is lacking. Here, to comprehensively map how complex lipids change during aging, we profiled ten tissues in young versus aged mice using a lipidomics platform. Strikingly, from >1,200 unique lipids, we found a tissue-wide accumulation of bis(monoacylglycero)phosphate (BMP) during mouse aging. To investigate translational value, we assessed muscle tissue of young and older people, and found a similar marked BMP accumulation in the human aging lipidome. Furthermore, we found that a healthy-aging intervention consisting of moderate-to-vigorous exercise was able to lower BMP levels in postmenopausal female research participants. Our work implicates complex lipid biology as central to aging, identifying a conserved aging lipid signature of BMP accumulation that is modifiable upon a short-term healthy-aging intervention.


Asunto(s)
Envejecimiento , Ejercicio Físico , Músculo Esquelético , Humanos , Animales , Envejecimiento/metabolismo , Femenino , Ratones , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Masculino , Lipidómica , Lisofosfolípidos/metabolismo , Condicionamiento Físico Animal/fisiología , Anciano , Metabolismo de los Lípidos/fisiología , Monoglicéridos/metabolismo , Adulto , Persona de Mediana Edad
5.
Acta Neuropathol Commun ; 12(1): 68, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664739

RESUMEN

Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Perfilación de la Expresión Génica , Metalotioneína , Mitocondrias , Respuesta de Proteína Desplegada , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Metalotioneína/genética , Metalotioneína/metabolismo , Femenino , Masculino , Anciano , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Anciano de 80 o más Años , Resiliencia Psicológica
6.
Nat Commun ; 15(1): 1667, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396116

RESUMEN

Microglia nodules (HLA-DR+ cell clusters) are associated with brain pathology. In this post-mortem study, we investigated whether they represent the first stage of multiple sclerosis (MS) lesion formation. We show that microglia nodules are associated with more severe MS pathology. Compared to microglia nodules in stroke, those in MS show enhanced expression of genes previously found upregulated in MS lesions. Furthermore, genes associated with lipid metabolism, presence of T and B cells, production of immunoglobulins and cytokines, activation of the complement cascade, and metabolic stress are upregulated in microglia nodules in MS. Compared to stroke, they more frequently phagocytose oxidized phospholipids and possess a more tubular mitochondrial network. Strikingly, in MS, some microglia nodules encapsulate partially demyelinated axons. Taken together, we propose that activation of microglia nodules in MS by cytokines and immunoglobulins, together with phagocytosis of oxidized phospholipids, may lead to a microglia phenotype prone to MS lesion formation.


Asunto(s)
Esclerosis Múltiple , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , Humanos , Esclerosis Múltiple/patología , Microglía/metabolismo , Enfermedades del Sistema Nervioso/patología , Accidente Cerebrovascular/patología , Citocinas/metabolismo , Inmunoglobulinas/metabolismo
7.
Hemasphere ; 7(9): e938, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37637994

RESUMEN

Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironmental cells and signals. The lymph node (LN) is the critical site of in vivo CLL proliferation and development of resistance to both chemotherapy and targeted agents. We present a new model that incorporates key aspects of the CLL LN, which enables investigation of CLL cells in the context of a protective niche. We describe a three-dimensional (3D) in vitro culture system using ultra-low attachment plates to create spheroids of CLL cells derived from peripheral blood. Starting from CLL:T cell ratios as observed in LN samples, CLL activation was induced by either direct stimulation and/or indirectly via T cells. Compared with two-dimensional cultures, 3D cultures promoted CLL proliferation in a T cell-dependent manner, and enabled expansion for up to 7 weeks, including the formation of follicle-like structures after several weeks of culture. This model enables high-throughput drug screening, of which we describe response to Btk inhibition, venetoclax resistance, and T cell-mediated cytotoxicity as examples. In summary, we present the first LN-mimicking in vitro 3D culture for primary CLL, which enables readouts such as real-time drug screens, kinetic growth assays, and spatial localization. This is the first in vitro CLL system that allows testing of response and resistance to venetoclax and Bruton's tyrosine kinase inhibitors in the context of the tumor microenvironment, thereby opening up new possibilities for clinically useful applications.

8.
Stem Cell Reports ; 18(9): 1793-1810, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37541258

RESUMEN

CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Mutación , Organoides/metabolismo , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
9.
iScience ; 26(1): 105785, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36594029

RESUMEN

The human brain is populated by perivascular T cells with a tissue-resident memory T (TRM)-cell phenotype, which in multiple sclerosis (MS) associate with lesions. We investigated the transcriptional and functional profile of freshly isolated T cells from white and gray matter. RNA sequencing of CD8+ and CD4+ CD69+ T cells revealed TRM-cell signatures. Notably, gene expression hardly differed between lesional and normal-appearing white matter T cells in MS brains. Genes up-regulated in brain TRM cells were MS4A1 (CD20) and SPP1 (osteopontin, OPN). OPN is also abundantly expressed by microglia and has been shown to inhibit T cell activity. In line with their parenchymal localization and the increased presence of OPN in active MS lesions, we noticed a reduced production of inflammatory cytokines IL-2, TNF, and IFNγ by lesion-derived CD8+ and CD4+ T cells ex vivo. Our study reports traits of brain TRM cells and reveals their tight control in MS lesions.

10.
Leukemia ; 37(3): 606-616, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658390

RESUMEN

T-cell dysregulation in chronic lymphocytic leukemia (CLL) associates with low response rates to autologous T cell-based therapies. How CLL affects antigen-specific T-cell responses remains largely unknown. We investigated (epi)genetic and functional consequences of antigen-specific T-cell responses in presence of CLL in vitro and in an adoptive-transfer murine model. Already at steady-state, antigen-experienced patient-derived T cells were skewed towards short-lived effector cells (SLEC) at the expense of memory-precursor effector cells (MPEC). Stimulation of these T cells in vitro showed rapid induction of effector genes and suppression of key memory transcription factors only in presence of CLL cells, indicating epigenetic regulation. This was investigated in vivo by following antigen-specific responses of naïve OT-I CD8+ cells to mCMV-OVA in presence/absence of TCL1 B-cell leukemia. Presence of leukemia resulted in increased SLEC formation, with disturbed inflammatory cytokine production. Chromatin and transcriptome profiling revealed strong epigenetic modifications, leading to activation of an effector and silencing of a memory profile through presence of CLL cells. Secondary challenge in vivo confirmed dysfunctional memory responses by antigen-experienced OT-I cells generated in presence of CLL. Altogether, we show that presence of CLL induces a short-lived effector phenotype and impaired memory responses by epigenetic reprogramming during primary responses.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/terapia , Epigénesis Genética , Linfocitos T CD8-positivos , Antígenos , Factores de Transcripción/genética
11.
Cardiovasc Res ; 119(5): 1146-1160, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-35587037

RESUMEN

AIMS: CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signalling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-tumour necrosis factor receptor associated factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS: Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, was reduced in CD40mac-/- compared to CD40wt mice, and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses. Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206+CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1, and Tns1). CONCLUSIONS: We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Transducción de Señal , Aorta/patología , Antígenos CD40/genética
12.
Mol Oncol ; 17(2): 284-297, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36400430

RESUMEN

Early data suggested that CC-115, a clinical molecule, already known to inhibit the mammalian target of rapamycin kinase (TORK) and DNA-dependent protein kinase (DNA-PK) may have additional targets beyond TORK and DNA-PK. Therefore, we aimed to identify such target(s) and investigate a potential therapeutic applicability. Functional profiling of 141 cancer cell lines revealed inhibition of kinase suppressor of morphogenesis in genitalia 1 (SMG1), a key regulator of the RNA degradation mechanism nonsense-mediated mRNA decay (NMD), as an additional target of CC-115. CC-115 treatment showed a dose-dependent increase of SMG1-mediated NMD transcripts. A subset of cell lines, including multiple myeloma (MM) cell lines sensitive to the endoplasmic reticulum stress-inducing compound thapsigargin, were highly susceptible to SMG1 inhibition. CC-115 caused the induction of UPR transcripts and cell death by mitochondrial apoptosis, requiring the presence of BAX/BAK and caspase activity. Superior antitumor activity of CC-115 over TORK inhibitors in primary human MM cells and three xenograft mouse models appeared to be via inhibition of SMG1. Our data support further development of SMG1 inhibitors as possible therapeutics in MM.


Asunto(s)
Mieloma Múltiple , Degradación de ARNm Mediada por Codón sin Sentido , Animales , Humanos , Ratones , Línea Celular , ADN/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
13.
Nat Commun ; 13(1): 4539, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927266

RESUMEN

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Epítopos , Humanos , Isotipos de Inmunoglobulinas , Receptores de Antígenos de Linfocitos B , Glicoproteína de la Espiga del Coronavirus
14.
J Am Heart Assoc ; 11(14): e025935, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35861824

RESUMEN

Background Plasma biomarkers may aid in the detection of anthracycline-related cardiomyopathy (ACMP). However, the currently available biomarkers have limited diagnostic value in long-term childhood cancer survivors. This study sought to identify diagnostic plasma biomarkers for ACMP in childhood cancer survivors. Methods and Results We measured 275 plasma proteins in 28 ACMP cases with left ventricular ejection fraction <45%, 29 anthracycline-treated controls with left ventricular ejection fraction ≥53% matched on sex, time after cancer, and anthracycline dose, and 29 patients with genetically determined dilated cardiomyopathy with left ventricular ejection fraction <45%. Multivariable linear regression was used to identify differentially expressed proteins. Elastic net model, including clinical characteristics, was used to assess discrimination of proteins diagnostic for ACMP. NT-proBNP (N-terminal pro-B-type natriuretic peptide) and the inflammatory markers CCL19 (C-C motif chemokine ligands 19) and CCL20, PSPD (pulmonary surfactant protein-D), and PTN (pleiotrophin) were significantly upregulated in ACMP compared with controls. An elastic net model selected 45 proteins, including NT-proBNP, CCL19, CCL20 and PSPD, but not PTN, that discriminated ACMP cases from controls with an area under the receiver operating characteristic curve (AUC) of 0.78. This model was not superior to a model including NT-proBNP and clinical characteristics (AUC=0.75; P=0.766). However, when excluding 8 ACMP cases with heart failure, the full model was superior to that including only NT-proBNP and clinical characteristics (AUC=0.75 versus AUC=0.50; P=0.022). The same 45 proteins also showed good discrimination between dilated cardiomyopathy and controls (AUC=0.89), underscoring their association with cardiomyopathy. Conclusions We identified 3 specific inflammatory proteins as candidate plasma biomarkers for ACMP in long-term childhood cancer survivors and demonstrated protein overlap with dilated cardiomyopathy.


Asunto(s)
Supervivientes de Cáncer , Cardiomiopatías , Cardiomiopatía Dilatada , Neoplasias , Antraciclinas/efectos adversos , Antibióticos Antineoplásicos/efectos adversos , Biomarcadores , Cardiomiopatías/inducido químicamente , Cardiomiopatías/diagnóstico , Estudios de Casos y Controles , Niño , Humanos , Péptido Natriurético Encefálico , Neoplasias/inducido químicamente , Neoplasias/tratamiento farmacológico , Fragmentos de Péptidos , Volumen Sistólico , Función Ventricular Izquierda
15.
Int J Radiat Oncol Biol Phys ; 112(1): 212-221, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34419566

RESUMEN

PURPOSE: Late radiation toxicity is a major dose-limiting factor in curative cancer radiation therapy. Previous studies identified several risk factors for late radiation toxicity, including both dose-volume factors and genetic predisposition. Herein, we investigated the contribution of genetic predisposition, particularly compared with dose-volume factors, to the risk of late radiation toxicity in patients treated with highly conformal radiation therapy. METHODS AND MATERIALS: We included 179 patients with prostate cancer who underwent treatment with curative external beam radiation therapy between 2009 and 2013. Toxicity was graded according to the Common Terminology Criteria for Adverse Events version 4.0. Transcriptional responsiveness of homologous recombination repair genes and γ-H2AX foci decay ratios (FDRs) were determined in ex vivo irradiated lymphocytes in a previous analysis. Dose-volume parameters were retrieved by delineating the organs at risk (OARs) on CT planning images. Associations between risk factors and grade ≥2 urinary and bowel late radiation toxicities were assessed using univariable and multivariable logistic regression analyses. The analyses were performed using the highest toxicity grade recorded during the follow-up per patient. RESULTS: The median follow-up period was 31 months. One hundred and one patients (56%) developed grade ≥2 late radiation toxicity. Cumulative rates for urinary and bowel grade ≥2 late toxicities were 46% and 17%, respectively. In the multivariable analysis, factors significantly associated with grade ≥2 late toxicity were transurethral resection of the prostate (P = .013), γ-H2AX FDR <3.41 (P = .008), and rectum V70 >11.52% (P = .017). CONCLUSIONS: Our results suggest that impaired DNA double-strand break repair in lymphocytes, as quantified by γ-H2AX FDR, is the most critical determining factor of late radiation toxicity. The limited influence of dose-volume parameters could be due to the use of increasingly conformal techniques, leading to improved dose-volume parameters of the organs at risk.


Asunto(s)
Neoplasias de la Próstata , Traumatismos por Radiación , Radioterapia Conformacional , Resección Transuretral de la Próstata , Humanos , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/genética , Traumatismos por Radiación/etiología , Dosificación Radioterapéutica , Radioterapia Conformacional/efectos adversos , Radioterapia Conformacional/métodos , Recto , Resección Transuretral de la Próstata/efectos adversos
16.
FASEB J ; 35(7): e21722, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34160105

RESUMEN

Retinal photoreceptors undergo daily renewal of their distal outer segments, a process indispensable for maintaining retinal health. Photoreceptor outer segment (POS) phagocytosis occurs as a daily peak, roughly about 1 hour after light onset. However, the underlying cellular and molecular mechanisms which initiate this process are still unknown. Here we show that, under constant darkness, mice deficient for core circadian clock genes (Per1 and Per2) lack a daily peak in POS phagocytosis. By qPCR analysis, we found that core clock genes were rhythmic over 24 hours in both WT and Per1, Per2 double mutant whole retinas. More precise transcriptomics analysis of laser capture microdissected WT photoreceptors revealed no differentially expressed genes between time points preceding and during the peak of POS phagocytosis. In contrast, we found that microdissected WT retinal pigment epithelium (RPE) had a number of genes that were differentially expressed at the peak phagocytic time point compared to adjacent ones. We also found a number of differentially expressed genes in Per1, Per2 double mutant RPE compared to WT ones at the peak phagocytic time point. Finally, based on STRING analysis, we found a group of interacting genes that potentially drive POS phagocytosis in the RPE. This potential pathway consists of genes such as: Pacsin1, Syp, Camk2b, and Camk2d among others. Our findings indicate that Per1 and Per2 are necessary clock components for driving POS phagocytosis and suggest that this process is transcriptionally driven by the RPE.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Fagocitosis/genética , Células Fotorreceptoras de Vertebrados/fisiología , Retina/fisiología , Animales , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis/fisiología , Células Fotorreceptoras/fisiología , Epitelio Pigmentado de la Retina/fisiología , Transcripción Genética/genética , Transcripción Genética/fisiología
17.
Cancers (Basel) ; 12(10)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050633

RESUMEN

Breast cancer is one of the leading causes of death for women worldwide. Patients whose tumors express Estrogen Receptor α account for around 70% of cases and are mostly treated with targeted endocrine therapy. However, depending on the degree of severity of the disease at diagnosis, 10 to 40% of these tumors eventually relapse due to resistance development. Even though recent novel approaches as the combination with CDK4/6 inhibitors increased the overall survival of relapsing patients, this remains relatively short and there is a urgent need to find alternative targetable pathways. In this study we profiled the early phases of the resistance development process to uncover drivers of this phenomenon. Time-resolved analysis revealed that ATF3, a member of the ATF/CREB family of transcription factors, acts as a novel regulator of the response to therapy via rewiring of central signaling processes towards the adaptation to endocrine treatment. ATF3 was found to be essential in controlling crucial processes such as proliferation, cell cycle, and apoptosis during the early response to treatment through the regulation of MAPK/AKT signaling pathways. Its essential role was confirmed in vivo in a mouse model, and elevated expression of ATF3 was verified in patient datasets, adding clinical relevance to our findings. This study proposes ATF3 as a novel mediator of endocrine resistance development in breast cancer and elucidates its role in the regulation of downstream pathways activities.

18.
Biochim Biophys Acta Gene Regul Mech ; 1863(10): 194623, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795630

RESUMEN

The retinas from Period 1 (Per1) and Period 2 (Per2) double-mutant mice (Per1-/-Per2Brdm1) display abnormal blue-cone distribution associated with a reduction in cone opsin mRNA and protein levels, up to 1 year of age. To reveal the molecular mechanisms by which Per1 and Per2 control retina development, we analyzed genome-wide gene expression differences between wild-type (WT) and Per1-/-Per2Brdm1 mice across ocular developmental stages (E15, E18 and P3). All clock genes displayed changes in transcript levels along with normal eye development. RNA-Seq data show major gene expression changes between WT and mutant eyes, with the number of differentially expressed genes (DEG) increasing with developmental age. Functional annotation of the genes showed that the most significant changes in expression levels in mutant mice involve molecular pathways relating to circadian rhythm signaling at E15 and E18. At P3, the visual cascade and the cell cycle were respectively higher and lower expressed compared to WT eyes. Overall, our study provides new insights into signaling pathways -phototransduction and cell cycle- controlled by the circadian clock in the eye during development.


Asunto(s)
Ciclo Celular/genética , Ojo/embriología , Ojo/metabolismo , Organogénesis/genética , Proteínas Circadianas Period/genética , Percepción Visual/genética , Alelos , Animales , Diferenciación Celular/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Ratones , Proteínas Circadianas Period/metabolismo , Transducción de Señal , Transcriptoma
19.
Front Cell Dev Biol ; 8: 520, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671069

RESUMEN

X-linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, and is characterized by the accumulation of very long-chain fatty acids in plasma and tissues. Disease-causing mutations are 'loss of function' mutations, with no prognostic value with respect to the clinical outcome of an individual. All male patients with ALD develop spinal cord disease and a peripheral neuropathy in adulthood, although age of onset is highly variable. However, the lifetime prevalence to develop progressive white matter lesions, termed cerebral ALD (CALD), is only about 60%. Early identification of transition to CALD is critical since it can be halted by allogeneic hematopoietic stem cell therapy only in an early stage. The primary goal of this study is to identify molecular markers which may be prognostic of cerebral demyelination from a simple blood sample, with the hope that blood-based assays can replace the current protocols for diagnosis. We collected six well-characterized brother pairs affected by ALD and discordant for the presence of CALD and performed multi-omic profiling of blood samples including genome, epigenome, transcriptome, metabolome/lipidome, and proteome profiling. In our analysis we identify discordant genomic alleles present across all families as well as differentially abundant molecular features across the omics technologies. The analysis was focused on univariate modeling to discriminate the two phenotypic groups, but was unable to identify statistically significant candidate molecular markers. Our study highlights the issues caused by a large amount of inter-individual variation, and supports the emerging hypothesis that cerebral demyelination is a complex mix of environmental factors and/or heterogeneous genomic alleles. We confirm previous observations about the role of immune response, specifically auto-immunity and the potential role of PFN1 protein overabundance in CALD in a subset of the families. We envision our methodology as well as dataset has utility to the field for reproducing previous or enabling future modifier investigations.

20.
BMC Cancer ; 20(1): 676, 2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32684154

RESUMEN

BACKGROUND: Estrogen receptor (ER) positive breast cancer is often effectively treated with drugs that inhibit ER signaling, i.e., tamoxifen (TAM) and aromatase inhibitors (AIs). However, 30% of ER+ breast cancer patients develop resistance to therapy leading to tumour recurrence. Changes in the methylation profile have been implicated as one of the mechanisms through which therapy resistance develops. Therefore, we aimed to identify methylation loci associated with endocrine therapy resistance. METHODS: We used genome-wide DNA methylation profiles of primary ER+/HER2- tumours from The Cancer Genome Atlas in combination with curated data on survival and treatment to predict development of endocrine resistance. Association of individual DNA methylation markers with survival was assessed using Cox proportional hazards models in a cohort of ER+/HER2- tumours (N = 552) and two sub-cohorts corresponding to the endocrine treatment (AI or TAM) that patients received (N = 210 and N = 172, respectively). We also identified multivariable methylation signatures associated with survival using Cox proportional hazards models with elastic net regularization. Individual markers and multivariable signatures were compared with DNA methylation profiles generated in a time course experiment using the T47D ER+ breast cancer cell line treated with tamoxifen or deprived from estrogen. RESULTS: We identified 134, 5 and 1 CpGs for which DNA methylation is significantly associated with survival in the ER+/HER2-, TAM and AI cohorts respectively. Multi-locus signatures consisted of 203, 36 and 178 CpGs and showed a large overlap with the corresponding single-locus signatures. The methylation signatures were associated with survival independently of tumour stage, age, AI treatment, and luminal status. The single-locus signature for the TAM cohort was conserved among the loci that were differentially methylated in endocrine-resistant T47D cells. Similarly, multi-locus signatures for the ER+/HER2- and AI cohorts were conserved in endocrine-resistant T47D cells. Also at the gene set level, several sets related to endocrine therapy and resistance were enriched in both survival and T47D signatures. CONCLUSIONS: We identified individual and multivariable DNA methylation markers associated with therapy resistance independently of luminal status. Our results suggest that these markers identified from primary tumours prior to endocrine treatment are associated with development of endocrine resistance.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Antineoplásicos Hormonales/uso terapéutico , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/mortalidad , Carcinoma Ductal de Mama/patología , Estudios de Cohortes , Islas de CpG/genética , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Análisis de Supervivencia , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...