Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2369, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499553

RESUMEN

The APOBEC3 enzymes convert cytosines in single-stranded DNA to uracils to protect against viruses and retrotransposons but can contribute to mutations that diversify tumors. To understand the mechanism of mutagenesis, we map the uracils resulting from expression of APOBEC3B or its catalytic carboxy-terminal domain (CTD) in Escherichia coli. Like APOBEC3A, the uracilomes of A3B and A3B-CTD show a preference to deaminate cytosines near transcription start sites and the lagging-strand replication templates and in hairpin loops. Both biochemical activities of the enzymes and genomic uracil distribution show that A3A prefers 3 nt loops the best, while A3B prefers 4 nt loops. Reanalysis of hairpin loop mutations in human tumors finds intrinsic characteristics of both the enzymes, with a much stronger contribution from A3A. We apply Hairpin Signatures 1 and 2, which define A3A and A3B preferences respectively and are orthogonal to published methods, to evaluate their contribution to human tumor mutations.


Asunto(s)
Citosina , Neoplasias , Humanos , Citosina/metabolismo , Proteínas/metabolismo , Mutación , Citidina Desaminasa/metabolismo , Neoplasias/genética , Uracilo/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo
2.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577595

RESUMEN

The APOBEC3 family of enzymes convert cytosines in single-stranded DNA to uracils thereby causing mutations. These enzymes protect human cells against viruses and retrotransposons, but in many cancers they contribute to mutations that diversify the tumors and help them escape anticancer drug treatments. To understand the mechanism of mutagenesis by APOBEC3B, we expressed the complete enzyme or its catalytic carboxy-terminal domain (CTD) in repair-deficient Eschericia coli and mapped the resulting uracils using uracil pull-down and sequencing technology. The uracilomes of A3B-full and A3B-CTD showed peaks in many of the same regions where APOBEC3A also created uracilation peaks. Like A3A, the two A3B enzymes also preferred to deaminate cytosines near transcription start sites and in the lagging-strand template at replication forks. In contrast to an earlier report that A3B does not favor hairpin loops over linear DNA, we found that both A3B-full and A3B-CTD showed a strong preference for cytosines in hairpin loops. The major difference between A3A and A3B was that while the former enzyme prefers 3 nt loops the best, A3B prefers loops of 4 nt over those of other lengths. Furthermore, within 5 nt loops, A3A prefers cytosine to be in the penultimate position, while A3B prefers it to be at the 3' end of the loop. We confirmed these loop size and sequence preferences experimentally using purified A3A and A3B-CTD proteins. Reanalysis of hairpin loop mutations in human tumors using the size, sequence and position preferences of the two enzymes found that the tumors displayed mutations with intrinsic characteristics of both the enzymes with a stronger contribution from A3A.

3.
Tetrahedron ; 1352023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37035443

RESUMEN

The design, synthesis and antiribosomal and antibacterial activity of two novel glycosides of the aminoglycoside antibiotic paromomycin are described. The first carries of 4-amino-4-deoxy-ß-D-xylopyranosyl moiety at the paromomycin 4'-position and is approximately two-fold more active than the corresponding ß-D-xylopyranosyl derivative. The second is a 4'-(ß-D-xylopyranosylthio) derivative of 4'-deoxyparomomycin that is unexpectedly less active than the simple ß-D-xylopyranosyl derivative, perhaps because of the insertion of the conformationally more mobile thioglycosidic linkage.

4.
Nature ; 600(7888): 324-328, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819670

RESUMEN

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Asunto(s)
Linfocitos B , ADN Glicosilasas , Reparación de la Incompatibilidad de ADN , Cambio de Clase de Inmunoglobulina , Proteínas de la Membrana , Mutación , Proteínas de Neoplasias , Hipermutación Somática de Inmunoglobulina , Animales , Femenino , Humanos , Ratones , Linfocitos B/metabolismo , Sistemas CRISPR-Cas , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/metabolismo , Epistasis Genética , Células HEK293 , Cambio de Clase de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Hipermutación Somática de Inmunoglobulina/genética
5.
J Antibiot (Tokyo) ; 72(4): 246-251, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30635614

RESUMEN

Culture feeding experiments with [1-13C]-acetate, [2-13C]- acetate, and [1,2-13C]-acetate have shown that the steroid ring B contraction involved in the biogenesis of the unprecedented carbon skeleton of the antibiotic solanioic acid (1) by the fungus Rhizoctonia solani involves cleavage of the C-5/C-6 bond. The study revealed that 9-epi-solanioic acid (4), which spontaneously converts to solanioic acid (1), is also produced by the cultures and it may be the actual natural product.


Asunto(s)
Antibacterianos/biosíntesis , Rhizoctonia/metabolismo , Esteroides/biosíntesis , Vías Biosintéticas , Isótopos de Carbono/metabolismo , Marcaje Isotópico , Rhizoctonia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA