Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hepatology ; 79(4): 898-911, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625151

RESUMEN

BACKGROUND AND AIMS: Genetic risk factors are major determinants of chronic liver disease (CLD) progression. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M polymorphism and alpha-1 antitrypsin (AAT) E342K variant, termed PiZ, are major modifiers of metabolic CLD. Both variants are known to affect metabolic CLD through increased endoplasmic reticulum stress, but their combined effect on CLD progression remains largely unknown. Here, we aimed to test our working hypothesis that their combined incidence triggers CLD disease progression. APPROACH AND RESULTS: We showed that patients with PiZZ/PNPLA3 I148M from the European alpha-1-antitrypsin deficiency (AATD) liver consortium and the UK Biobank had a trend towards higher liver enzymes, but no increased liver fat accumulation was evident between subgroups. After generating transgenic mice that overexpress the PiZ variant and simultaneously harbor the PNPLA3 I148M knockin (designated as PiZ/PNPLA3 I148M ), we observed that animals with PiZ and PiZ/PNPLA3 I148M showed increased liver enzymes compared to controls during aging. However, no significant difference between PiZ and PiZ/PNPLA3 I148M groups was observed, with no increased liver fat accumulation over time. To further study the impact on CLD progression, a Western-styled diet was administered, which resulted in increased fat accumulation and fibrosis in PiZ and PiZ/PNPLA3 I148M livers compared to controls, but the additional presence of PNPLA3 I148M had no impact on liver phenotype. Notably, the PiZ variant protected PNPLA3 I148M mice from liver damage and obesity after Western-styled diet feeding. CONCLUSION: Our results demonstrate that the PNPLA3 polymorphism in the absence of additional metabolic risk factors is insufficient to drive the development of advanced liver disease in severe AATD.


Asunto(s)
Enfermedades del Sistema Digestivo , Enfermedad del Hígado Graso no Alcohólico , Deficiencia de alfa 1-Antitripsina , Animales , Humanos , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/genética , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfolipasas A2 Calcio-Independiente/genética , Fosfolipasas A2 Calcio-Independiente/metabolismo , Factores de Riesgo
2.
JHEP Rep ; 5(11): 100854, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37791376

RESUMEN

Background & Aims: Cholestatic liver injury is associated with c-Jun N-terminal kinases (JNK) activation in distinct cell types. Its hepatocyte-specific function during cholestasis, however, has not yet been established. Therefore, in our present study, we investigated the role of JNK1/2 during cholestasis and dissected its hepatocyte-specific function. Methods: A cohort of patients with primary biliary cholangitis (n = 29) and primary sclerosing cholangitis (n = 37) was examined. Wild-type, hepatocyte-specific knockout mice for Jnk2 (Jnk2Δhepa) or Jnk1 and Jnk2 (Jnk1Δhepa/2Δhepa) were generated. Mice were subjected to bile duct ligation (BDL) or carbon tetrachloride (CCl4) treatment. Finally, Apelin signalling was blocked using a specific inhibitor. As an interventional approach, Jnk1/2 were silenced in wild-type mice using lipid nanoparticles for small interfering RNA delivery. Results: JNK activation was increased in liver specimens from patients with chronic cholestasis (primary biliary cholangitis and primary sclerosing cholangitis) and in livers of Mdr2-/- and BDL-treated animals. In Jnk1Δhepa/2Δhepa animals, serum transaminases increased after BDL, and liver histology demonstrated enhanced cell death, compensatory proliferation, hepatic fibrogenesis, and inflammation. Furthermore, microarray analysis revealed that hepatocytic Jnk1/2 ablation induces JNK-target genes involved in oxidative stress and Apelin signalling after BDL. Consequently, blocking Apelin signalling attenuated BDL-induced liver injury and fibrosis in Jnk1Δhepa/2Δhepa mice. Finally, we established an interventional small interfering RNA approach of selective Jnk1/2 targeting in hepatocytes in vivo, further demonstrating the essential protective role of Jnk1/2 during cholestasis. Conclusions: Jnk1 and Jnk2 work together to protect hepatocytes from cholestatic liver disease by controlling Apelin signalling. Dual modification of JNK signalling in hepatocytes is feasible, and enhancing its expression might be an attractive therapeutic approach for cholestatic liver disease. Impact and Implications: The cell-specific function of Jnk genes during cholestasis has not been explicitly explored. In this study, we showed that combined Jnk1/2, but not Jnk2 deficiency, in hepatocytes exacerbates liver damage and fibrosis by enhancing Apelin signalling, which contributes to cholestasis progression. Combined cell-specific Jnk targeting may be a new molecular strategy for treating cholestatic liver disease.

3.
Cell Death Dis ; 14(8): 514, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563155

RESUMEN

Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease.


Asunto(s)
Cirrosis Hepática , Neuroblastoma , Animales , Humanos , Ratones , Tetracloruro de Carbono/toxicidad , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/tratamiento farmacológico , Neuroblastoma/patología , Oncogenes
4.
Adv Healthc Mater ; : e2202670, 2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36617516

RESUMEN

Hepatic clearance of lipid nanoparticles (LNP) with encapsulated nucleic acids restricts their therapeutic applicability. Therefore, tools for regulating hepatic clearance are of high interest for nucleic acid delivery. To this end, this work employs wild-type (WT) and low-density lipoprotein receptor (Ldlr)-/- mice pretreated with either a leukotriene B4 receptor inhibitor (BLT1i) or a high-density lipoprotein receptor inhibitor (HDLRi) prior to the injection of siRNA-LNP. This work is able to demonstrate significantly increased hepatic uptake of siRNA-LNP by the BLT1i in Ldlr-/- mice by in vivo imaging and discover an induction of specific uptake-related proteins. Irrespective of the inhibitors and Ldlr deficiency, the siRNA-LNP induced RNA-binding and transport-related proteins in liver, including haptoglobin (HP) that is also identified as most upregulated serum protein. This work observes a downregulation of proteins functioning in hepatic detoxification and of serum opsonins. Most strikingly, the HDLRi reduces hepatic uptake and increases siRNA accumulation in spleen and myeloid immune cells of blood and liver. RNA sequencing demonstrates leukocyte recruitment by the siRNA-LNP and the HDLRi through induction of chemokine ligands in liver tissue. The data provide insights into key mechanisms of siRNA-LNP biodistribution and indicate that the HDLRi has potential for extrahepatic and leukocyte targeting.

5.
Cancers (Basel) ; 14(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008241

RESUMEN

Fibropolycystic liver disease is characterized by hyperproliferation of the biliary epithelium and the formation of multiple dilated cysts, a process associated with unfolded protein response (UPR). In the present study, we aimed to understand the mechanisms of cyst formation and UPR activation in hepatocytic c-Jun N-terminal kinase 1/2 (Jnk1/2) knockout mice. Floxed JNK1/2 (Jnkf/f) and Jnk∆hepa animals were sacrificed at different time points during progression of liver disease. Histological examination of specimens evidenced the presence of collagen fiber deposition, increased α-smooth muscle actin (αSMA), infiltration of CD45, CD11b and F4/80 cells and proinflammatory cytokines (Tnf, Tgfß1) and liver injury (e.g., ALT, apoptosis and Ki67-positive cells) in Jnk∆hepa compared with Jnkf/f livers from 32 weeks of age. This was associated with activation of effectors of the UPR, including BiP/GRP78, CHOP and spliced XBP1. Tunicamycin (TM) challenge strongly induced ER stress and fibrosis in Jnk∆hepa animals compared with Jnkf/f littermates. Finally, thioacetamide (TAA) administration to Jnk∆hepa mice induced UPR activation, peribiliary fibrosis, liver injury and markers of biliary proliferation and cholangiocarcinoma (CCA). Orthoallografts of DEN/CCl4-treated Jnk∆hepa liver tissue triggered malignant CCA. Altogether, these results suggest that activation of the UPR in conjunction with fibrogenesis might trigger hepatic cystogenesis and early stages of CCA.

6.
Hepatol Commun ; 4(6): 834-851, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32490320

RESUMEN

Targeted inhibition of the c-Jun N-terminal kinases (JNKs) has shown therapeutic potential in intrahepatic cholangiocarcinoma (CCA)-related tumorigenesis. However, the cell-type-specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remain largely unknown. Here, we aimed to investigate the relevance of JNK1 and JNK2 function in hepatocytes in two different models of experimental carcinogenesis, the dethylnitrosamine (DEN) model and in nuclear factor kappa B essential modulator (NEMO)hepatocyte-specific knockout (Δhepa) mice, focusing on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development. Moreover, regulation of essential genes was assessed by reverse transcription polymerase chain reaction, immunoblottings, and immunostainings. Additionally, specific Jnk2 inhibition in hepatocytes of NEMOΔhepa/JNK1Δhepa mice was performed using small interfering (si) RNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of Jnk1 and Jnk2 in hepatocytes diminished hepatocellular carcinoma (HCC) in both the DEN model and in NEMOΔhepa mice but in contrast caused massive proliferation of the biliary ducts. Indeed, Jnk1/2 deficiency in hepatocytes of NEMOΔhepa (NEMOΔhepa/JNKΔhepa) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression but reduced HCC. Furthermore, siJnk2 treatment in NEMOΔhepa/JNK1Δhepa mice recapitulated the phenotype of NEMOΔhepa/JNKΔhepa mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMOΔhepa mice. We found that NEMOΔhepa/JNKΔhepa livers exhibited overexpression of the interleukin-6/signal transducer and activator of transcription 3 pathway in addition to epidermal growth factor receptor (EGFR)-rapidly accelerated fibrosarcoma (Raf)-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade. The functional relevance was tested by administering lapatinib, which is a dual tyrosine kinase inhibitor of erythroblastic oncogene B-2 (ErbB2) and EGFR signaling, to NEMOΔhepa/JNKΔhepa mice. Lapatinib effectively inhibited cystogenesis, improved transaminases, and effectively blocked EGFR-Raf-MEK-ERK signaling. Conclusion: We define a novel function of JNK1/2 in cholangiocyte hyperproliferation. This opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis.

7.
Cell Death Dis ; 11(5): 343, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393755

RESUMEN

Lipid-based RNA nanocarriers have been recently accepted as a novel therapeutic option in humans, thus increasing the therapeutic options for patients. Tailored nanomedicines will enable to treat chronic liver disease (CLD) and end-stage liver cancer, disorders with high mortality and few treatment options. Here, we investigated the curative potential of gene therapy of a key molecule in CLD, the c-Jun N-terminal kinase-2 (Jnk2). Delivery to hepatocytes was achieved using a lipid-based clinically employable siRNA formulation that includes a cationic aminolipid to knockdown Jnk2 (named siJnk2). After assessing the therapeutic potential of siJnk2 treatment, non-invasive imaging demonstrated reduced apoptotic cell death and improved hepatocarcinogenesis was evidenced by improved liver parenchyma as well as ameliorated markers of hepatic damage, reduced fibrogenesis in 1-year-old mice. Strikingly, chronic siJnk2 treatment reduced premalignant nodules, indicative of tumor initiation. Furthermore, siJnk2 treatment led to a significant activation of the immune cell compartment. In conclusion, Jnk2 knockdown in hepatocytes ameliorated hepatitis, fibrogenesis, and initiation of hepatocellular carcinoma (HCC), and hence might be a suitable therapeutic option, to define novel molecular targets for precision medicine in CLD.


Asunto(s)
Técnicas de Transferencia de Gen , Hepatocitos/enzimología , Lípidos/química , Cirrosis Hepática/terapia , Neoplasias Hepáticas/prevención & control , Hígado/enzimología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , ARN Interferente Pequeño/metabolismo , Tratamiento con ARN de Interferencia , Animales , Apoptosis , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Hepatocitos/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Hígado/patología , Cirrosis Hepática/enzimología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/genética , Nanopartículas , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA