Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(41): 25077-25087, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36056687

RESUMEN

The molecular origins of homochirality on Earth is not understood well, particularly how enantiomerically enriched molecules of astrobiological significance like sugars and amino acids might have been synthesized on icy grains in space preceding their delivery to Earth. Polycyclic aromatic hydrocarbons (PAHs) identified in carbonaceous chondrites could have been processed in molecular clouds by circularly polarized light prior to the depletion of enantiomerically enriched helicenes onto carbonaceous grains resulting in chiral islands. However, the fundamental low temperature reaction mechanisms leading to racemic helicenes are still unknown. Here, by exploiting synchrotron based molecular beam photoionization mass spectrometry combined with electronic structure calculations, we provide compelling testimony on barrierless, low temperature pathways leading to racemates of [5] and [6]helicene. Astrochemical modeling advocates that gas-phase reactions in molecular clouds lead to racemates of helicenes suggesting a pathway for future astronomical observation and providing a fundamental understanding for the origin of homochirality on early Earth.


Asunto(s)
Meteoroides , Aminoácidos/química , Azúcares , Estereoisomerismo
2.
Phys Chem Chem Phys ; 23(10): 5740-5749, 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33595573

RESUMEN

Fullerenes (C60, C70) detected in planetary nebulae and carbonaceous chondrites have been implicated to play a key role in the astrochemical evolution of the interstellar medium. However, the formation mechanism of even their simplest molecular building block-the corannulene molecule (C20H10)-has remained elusive. Here we demonstrate via a combined molecular beams and ab initio investigation that corannulene can be synthesized in the gas phase through the reactions of 7-fluoranthenyl (C16H9˙) and benzo[ghi]fluoranthen-5-yl (C18H9˙) radicals with acetylene (C2H2) mimicking conditions in carbon-rich circumstellar envelopes. This reaction sequence reveals a reaction class in which a polycyclic aromatic hydrocarbon (PAH) radical undergoes ring expansion while simultaneously forming an out-of-plane carbon backbone central to 3D nanostructures such as buckybowls and buckyballs. These fundamental reaction mechanisms are critical in facilitating an intimate understanding of the origin and evolution of the molecular universe and, in particular, of carbon in our galaxy.

3.
Angew Chem Int Ed Engl ; 58(48): 17442-17450, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31482662

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) represent the link between resonance-stabilized free radicals and carbonaceous nanoparticles generated in incomplete combustion processes and in circumstellar envelopes of carbon rich asymptotic giant branch (AGB) stars. Although these PAHs resemble building blocks of complex carbonaceous nanostructures, their fundamental formation mechanisms have remained elusive. By exploring these reaction mechanisms of the phenyl radical with biphenyl/naphthalene theoretically and experimentally, we provide compelling evidence on a novel phenyl-addition/dehydrocyclization (PAC) pathway leading to prototype PAHs: triphenylene and fluoranthene. PAC operates efficiently at high temperatures leading through rapid molecular mass growth processes to complex aromatic structures, which are difficult to synthesize by traditional pathways such as hydrogen-abstraction/acetylene-addition. The elucidation of the fundamental reactions leading to PAHs is necessary to facilitate an understanding of the origin and evolution of the molecular universe and of carbon in our galaxy.

4.
Angew Chem Int Ed Engl ; 55(39): 12054-8, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27535022

RESUMEN

A new approach to fused helicenes is reported, where varied substituents are readily incorporated in the extended aromatic frame. From the alkynyl precursor, the final helical compounds are obtained under mild conditions in a two-step process, in which the final C-C bond is formed via a photochemical cyclization/ dehydroiodination sequence. The distortion of the π-system from planarity leads to unusual packing in the solid state. Computational analysis reveals that substituent incorporation perturbs geometries and electronic structures of these nonplanar aromatics.

5.
J Am Chem Soc ; 137(49): 15441-50, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26536479

RESUMEN

The last missing example of the four archetypical cycloaromatizations of enediynes and enynes was discovered by combining a twisted alkene excited state with a new self-terminating path for intramolecular conversion of diradicals into closed-shell products. Photoexcitation of aromatic enynes to a twisted alkene triplet state creates a unique stereoelectronic situation, which is facilitated by the relief of excited state antiaromaticity of the benzene ring. This enables the usually unfavorable 5-endo-trig cyclization and merges it with 5-exo-dig closure. The 1,4-diradical product of the C1-C5 cyclization undergoes internal H atom transfer that is coupled with the fragmentation of an exocyclic C-C bond. This sequence provides efficient access to benzofulvenes from enynes and expands the utility of self-terminating aromatizing enyne cascades to photochemical reactions. The key feature of this self-terminating reaction is that, despite the involvement of radical species in the key cyclization step, no external radical sources or quenchers are needed to provide the products. In these cascades, both radical centers are formed transiently and converted to the closed-shell products via intramolecular H-transfer and C-C bond fragmentation. Furthermore, incorporating C-C bond cleavage into the photochemical self-terminating cyclizations of enynes opens a new way for the use of alkenes as alkyne equivalents in organic synthesis.

6.
J Am Chem Soc ; 137(19): 6335-49, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25906261

RESUMEN

Chemoselective interaction of aromatic enynes with Bu3Sn radicals can be harnessed for selective cascade transformations, yielding either Sn-substituted naphthalenes or Sn-indenes. Depending on the substitution at the alkene terminus, the initial regioselective 5-exo-trig cyclizations can be intercepted at the 5-exo stage via either hydrogen atom abstraction or C-S bond scission or allowed to proceed further to the formal 6-endo products via homoallylic ring expansion. Aromatization of the latter occurs via ß-C-C bond scission, which is facilitated by 2c,3e through-bond interactions, a new stereoelectronic effect in radical chemistry. The combination of formal 6-endo-trig cyclization with stereoelectronically optimized fragmentation allows the use of alkenes as synthetic equivalents of alkynes and opens a convenient route to α-Sn-substituted naphthalenes, a unique launching platform for the preparation of extended polyaromatics.

7.
J Org Chem ; 79(16): 7491-501, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25011054

RESUMEN

The switch from 5-exo- to 6-endo-trig selectivity in the radical cyclization of aromatic enynes was probed via the combination of experimental and computational methods. This transformation occurs by kinetic self-sorting of the mixture of four equilibrating radicals via 5-exo-trig cyclization, followed by homoallyl (3-exo-trig/fragmentation) ring expansion to afford the benzylic radical necessary for the final aromatizing C-C bond fragmentation. The interception of the intermediate 5-exo-trig product via ß-scission of a properly positioned weak C-S bond provides direct mechanistic evidence for the 5-exo cyclization/ring expansion sequence. The overall cascade uses alkenes as synthetic equivalents of alkynes for the convenient and mild synthesis of Bu3Sn-functionalized naphthalenes.

8.
Chemistry ; 20(28): 8664-9, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24898770

RESUMEN

Radical cascades terminated by ß-scission of exocyclic CC bonds allow for the formation of aromatic products. Whereas ß-scission is common for weaker bonds, achieving this reactivity for carbon-carbon bonds requires careful design of radical leaving groups. It has now been found that the energetic penalty for breaking a strong σ-bond can be compensated by the gain of aromaticity in the product and by the stabilizing two-center, three-electron "half-bond" present in the radical fragment. Furthermore, through-bond communication of a radical and a lone pair accelerates the fragmentation by selectively stabilizing the transition state. The stereoelectronic design of radical leaving groups leads to a new, convenient route to Sn-functionalized aromatics.

10.
Org Lett ; 15(22): 5650-3, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24188522

RESUMEN

Despite the possibility of intermolecular attack at four different locations, the Bu3Sn-mediated radical cyclization of aromatic enynes is surprisingly selective. The observed reaction path originates from the least stable of the equilibrating pool of isomeric radicals produced by intermolecular Bu3Sn attack at the π-bonds of substrates. The radical pool components are kinetically self-sorted via 5-exo-trig closure, the fastest of the four possible cyclizations. The resulting Sn-substituted indenes are capable of further transformations in reactions with electrophiles.

12.
Org Lett ; 14(23): 6032-5, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23190310

RESUMEN

The Sonogashira/5-endo-dig/6-endo-dig cascade fuses a polycyclic aromatic backbone to the electron-rich furan subunit. The transformation proceeds in modest yields as a one-pot reaction. Efficiency of the full cascade is increased by removal of base prior to the addition of gold catalyst. Under these conditions, conversion to the full cascade products is achieved in nearly quantitative yields without purification of the intermediate products. Extension of the cascade toward triynes opens access to benzofuran-fused chrysene derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...