Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 55(5): 544-557.e6, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33120014

RESUMEN

Differentiation therapy utilizes our understanding of the hierarchy of cellular systems to pharmacologically induce a shift toward terminal commitment. While this approach has been a paradigm in treating certain hematological malignancies, efforts to translate this success to solid tumors have met with limited success. Mammary-specific activation of PKA in mouse models leads to aberrant differentiation and diminished self-renewing potential of the basal compartment, which harbors mammary repopulating cells. PKA activation results in tumors that are more benign, exhibiting reduced metastatic propensity, loss of tumor-initiating potential, and increased sensitivity to chemotherapy. Analysis of tumor histopathology revealed features of overt differentiation with papillary characteristics. Longitudinal single-cell profiling at the hyperplasia and tumor stages uncovered an altered path of tumor evolution whereby PKA curtails the emergence of aggressive subpopulations. Acting through the repression of SOX4, PKA activation promotes tumor differentiation and represents a possible adjuvant to chemotherapy for certain breast cancers.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neoplasias Mamarias Animales/enzimología , Neoplasias Mamarias Animales/patología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Linaje de la Célula , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Activación Enzimática , Femenino , Amplificación de Genes , Sitios Genéticos , Genoma Humano , Humanos , Neoplasias Mamarias Animales/genética , Ratones , Metástasis de la Neoplasia , Factores de Transcripción SOXC/metabolismo , Transducción de Señal
2.
Genome Res ; 26(11): 1505-1519, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27650846

RESUMEN

Cell lineages, which shape the body architecture and specify cell functions, derive from the integration of a plethora of cell intrinsic and extrinsic signals. These signals trigger a multiplicity of decisions at several levels to modulate the activity of dynamic gene regulatory networks (GRNs), which ensure both general and cell-specific functions within a given lineage, thereby establishing cell fates. Significant knowledge about these events and the involved key drivers comes from homogeneous cell differentiation models. Even a single chemical trigger, such as the morphogen all-trans retinoic acid (RA), can induce the complex network of gene-regulatory decisions that matures a stem/precursor cell to a particular step within a given lineage. Here we have dissected the GRNs involved in the RA-induced neuronal or endodermal cell fate specification by integrating dynamic RXRA binding, chromatin accessibility, epigenetic promoter epigenetic status, and the transcriptional activity inferred from RNA polymerase II mapping and transcription profiling. Our data reveal how RA induces a network of transcription factors (TFs), which direct the temporal organization of cognate GRNs, thereby driving neuronal/endodermal cell fate specification. Modeling signal transduction propagation using the reconstructed GRNs indicated critical TFs for neuronal cell fate specification, which were confirmed by CRISPR/Cas9-mediated genome editing. Overall, this study demonstrates that a systems view of cell fate specification combined with computational signal transduction models provides the necessary insight in cellular plasticity for cell fate engineering. The present integrated approach can be used to monitor the in vitro capacity of (engineered) cells/tissues to establish cell lineages for regenerative medicine.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Neurogénesis , Animales , Línea Celular Tumoral , Linaje de la Célula , Cromatina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Endodermo/citología , Epigénesis Genética , Ratones , Activación Transcripcional , Tretinoina/farmacología
3.
Nucleic Acids Res ; 41(21): e196, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24038469

RESUMEN

The absence of a quality control (QC) system is a major weakness for the comparative analysis of genome-wide profiles generated by next-generation sequencing (NGS). This concerns particularly genome binding/occupancy profiling assays like chromatin immunoprecipitation (ChIP-seq) but also related enrichment-based studies like methylated DNA immunoprecipitation/methylated DNA binding domain sequencing, global run on sequencing or RNA-seq. Importantly, QC assessment may significantly improve multidimensional comparisons that have great promise for extracting information from combinatorial analyses of the global profiles established for chromatin modifications, the bindings of epigenetic and chromatin-modifying enzymes/machineries, RNA polymerases and transcription factors and total, nascent or ribosome-bound RNAs. Here we present an approach that associates global and local QC indicators to ChIP-seq data sets as well as to a variety of enrichment-based studies by NGS. This QC system was used to certify >5600 publicly available data sets, hosted in a database for data mining and comparative QC analyses.


Asunto(s)
Inmunoprecipitación de Cromatina/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Análisis de Secuencia de ADN/normas , Simulación por Computador , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...