Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 240, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238019

RESUMEN

Long-term antibiotic treatment results in the increasing resistance of bacteria to antimicrobials drugs, so it is necessary to search for effective alternatives to prevent and treat pathogens that cause diseases. This study is aimed for biological synthesis of silver Carthamus nanoparticles (Ag-Carth-NPs) to combat microbial biofilm formation and Pseudomonas aeruginosa virulence genes. Ag-Carth-NPs are synthesized using Carthamus tenuis aqueous extract as environmentally friendly method has no harmful effect on environment. General factorial design is used to optimize Ag-Carth-NPs synthesis using three variables in three levels are Carthamus extract concentration, silver nitrate concentration and gamma radiation doses. Analysis of response data indicates gamma radiation has a significant effect on Ag-Carth-NPs production. Ag-Carth-NPs have sharp peak at λ max 425 nm, small and spherical particles with size 20.0 ± 1.22 nm, high stability up to 240 day with zeta potential around - 43 ± 0.12 mV, face centered cubic crystalline structure and FT-IR spectroscopy shows peak around 620 cm-1 that corresponding to AgNPs that stabilized by C. tenuis extract functional moiety. The antibacterial activity of Ag-Carth-NPs against pathogenic bacteria and fungi was determined using well diffusion method. The MIC values of Ag-Carth-NPs were (6.25, 6.25, 3.126, 25, 12.5, 12.5, 25 and 12.5 µg/ml), MBC values were (12.5, 12.5, 6.25, 50, 25, 25, 50 and 25 µg/ml) and biofilm inhibition% were (62.12, 68.25, 90.12, 69.51, 70.61, 71.12, 75.51 and 77.71%) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Candida tropicalis and Candida albicans respectively. Ag-Carth-NPs has bactericidal efficacy and significantly reduced the swarming, swimming motility, pyocyanin and protease production of P. aeruginosa. Furthermore, P. aeruginosa ToxA gene expression was significantly down regulated by 81.5%, while exoU reduced by 78.1%, where lasR gene expression reduction was 68%, while the reduction in exoU was 66% and 60.1% decrease in lasB gene expression after treatment with Ag-Carth-NPs. This activity is attributed to effect of Ag-Carth-NPs on cell membrane integrity, down regulation of virulence gene expression, and induction of general and oxidative stress in P. aeruginosa. Ag-Carth-NPs have no significant cytotoxic effects on normal human cell (Hfb4) but have IC50 at 5.6µg/mL against of HepG-2 cells. Limitations of the study include studies with low risks of silver nanoparticles for in vitro antimicrobial effects and its toxicity.


Asunto(s)
Antibacterianos , Biopelículas , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Plata , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Antibacterianos/farmacología , Antibacterianos/química , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
2.
Bioprocess Biosyst Eng ; 45(2): 257-268, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34665338

RESUMEN

In the present work, a simple, novel, and ecofriendly method for synthesis of silver nanoparticles (AgNPs) and BC/AgNP composite using bacterial cellulose (BC) nanofibers soaked in AgNO3 solution under induction action of solar radiation. The photochemical reduction of silver Ag + ions into silver nanoparticles (Ago) was confirmed using UV visible spectra; the surface plasmon resonance of synthesized AgNPs was localized around 425 nm. The mean diameter of AgNPs obtained by DLS analysis was 52.0 nm with a zeta potential value of - 9.98 mV. TEM images showed a spherical shape of AgNPs. The formation of BC/AgNP composite was confirmed by FESEM, EDX, FTIR, and XRD analysis. FESEM images for BC showed the 3D structures of BC nanofibers and the deposited AgNPs in the BC crystalline nanofibers. XRD measurements revealed the high crystallinity of BC and BC/AgNP composite with crystal sizes of 5.13 and 5.6 nm, respectively. BC/AgNP composite and AgNPs exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria. The present work introduces a facile green approach for BC/AgNP composite synthesis and its utility as potential food packaging and wound dressings, as well as sunlight indicator application.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/química , Celulosa , Bacterias Gramnegativas , Bacterias Grampositivas , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plata/química , Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...