Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 957: 175961, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549730

RESUMEN

Targeting HPV16 E6 has emerged as an effective drug target for the treatment/management of cervical cancer. We utilized pharmacophore-based virtual screening, molecular docking, absorption, distribution, metabolism and excretion (ADME) prediction, and molecular dynamics simulation approach for identifying potential inhibitors of HPV16 E6. Initially, we generated a ligand-based pharmacophore model based on the features of four known HPV16 E6 inhibitors (CA24, CA25, CA26, and CA27) via the PHASE module implanted in the Schrödinger suite. We constructed four-point pharmacophore features viz., three hydrogen bond acceptors (A) and one aromatic ring (R). The common pharmacophore feature further employed as a query for virtual screening against the ASINEX database via Schrödinger suite. The pharmacophore-based virtual screening filtered out top 2000 hits, based on the fitness score. We then applied the high throughput virtual screening (HTVS), standard precision (SP) and extra precision (XP). 1000 compounds were obtained from HTVS docking. Based on the glide score, they were further filtered to 500 hits by employing docking in standard precision mode. Finally, the best four hits and a negative molecule were identified using docking in XP mode. The four lead compounds and a negative molecule were then further subjected to ADME profile prediction by engaging Qikprop module. The ADME properties of the four lead molecules indicate good pharmacokinetic (PK) properties rather than the negative molecule. The binding stability of the HPV16 E6-hit complexes were investigated at a different time scale (100 ns) by using the desmond package and the results were examined using Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) and it revealed the stability of the protein-ligand complex throughout the simulation. Key residues, CYS 51 and GLN 107, also play a crucial role in enhancing the stability of the protein-ligand complex during the simulation. Furthermore, the binding free energy of the HPV16 E6-leads complexes was analyzed by prime which revealed that the ΔGbind coulomb and ΔGbind vdW interactions are crucially contributes to the binding affinity. In order to validate the computational findings, the efficacy of benzoimidazole and benzotriazole were ascertained for regulating ME180 cervical cancer cell survival, migration and ability to release MMP-2.


Asunto(s)
Papillomavirus Humano 16 , Neoplasias del Cuello Uterino , Humanos , Femenino , Simulación del Acoplamiento Molecular , Unión Proteica , Farmacóforo , Ligandos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Detección Precoz del Cáncer
2.
Mol Divers ; 26(3): 1645-1661, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34480682

RESUMEN

COVID-19 is a viral pandemic caused by SARS-CoV-2. Due to its highly contagious nature, millions of people are getting affected worldwide knocking down the delicate global socio-economic equilibrium. According to the World Health Organization, COVID-19 has affected over 186 million people with a mortality of around 4 million as of July 09, 2021. Currently, there are few therapeutic options available for COVID-19 control. The rapid mutations in SARS-CoV-2 genome and development of new virulent strains with increased infection and mortality among COVID-19 patients, there is a great need to discover more potential drugs for SARS-CoV-2 on a priority basis. One of the key viral enzymes responsible for the replication and maturation of SARS-CoV-2 is Mpro protein. In the current study, structure-based virtual screening was used to identify four potential ligands against SARS-CoV-2 Mpro from a set of 8,722 ASINEX library compounds. These four compounds were evaluated using ADME filter to check their ADME profile and druggability, and all the four compounds were found to be within the current pharmacological acceptable range. They were individually docked to SARS-CoV-2 Mpro protein to assess their molecular interactions. Further, molecular dynamics (MD) simulations was carried out on protein-ligand complex using Desmond at 100 ns to explore their binding conformational stability. Based on RMSD, RMSF and hydrogen bond interactions, it was found that the stability of protein-ligand complex was maintained throughout the entire 100 ns simulations for all the four compounds. Some of the key ligand amino acid residues participated in stabilizing the protein-ligand interactions includes GLN 189, SER 10, GLU 166, ASN 142 with PHE 66 and TRP 132 of SARS-CoV-2 Mpro. Further optimization of these compounds could lead to promising drug candidates for SARS-CoV-2 Mpro target.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...