Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (185)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35913132

RESUMEN

The chicken embryo is a widely accepted animal model to study the auditory brainstem, composed of highly specialized microcircuitry and neuronal topology differentially oriented along a tonotopic (i.e., frequency) axis. The tonotopic axis permits the segregated encoding of high-frequency sounds in the rostral-medial plane and low-frequency encoding in caudo-lateral regions. Traditionally, coronal brainstem slices of embryonic tissue permit the study of relative individual iso-frequency lamina. Although sufficient to investigate anatomical and physiological questions pertaining to individual iso-frequency regions, the study of tonotopic variation and its development across larger auditory brainstem areas is somewhat limited. This protocol reports brainstem slicing techniques from chicken embryos that encompass larger gradients of frequency regions in the lower auditory brainstem. The utilization of different slicing methods for chicken auditory brainstem tissue permits electrophysiological and anatomical experiments within one brainstem slice, where larger gradients of tonotopic properties and developmental trajectories are better preserved than coronal sections. Multiple slicing techniques allow for improved investigation of the diverse anatomical, biophysical, and tonotopic properties of auditory brainstem microcircuits.


Asunto(s)
Corteza Auditiva , Pollos , Estimulación Acústica , Animales , Vías Auditivas/fisiología , Tronco Encefálico , Embrión de Pollo , Neuronas/fisiología
2.
J Neurosci ; 42(30): 5843-5859, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35732494

RESUMEN

Temporal lobe epilepsy (TLE), the most common focal seizure disorder in adults, can be instigated in experimental animals by convulsant-induced status epilepticus (SE). Principal hippocampal neurons from SE-experienced epileptic male rats (post-SE neurons) display markedly augmented spike output compared with neurons from nonepileptic animals (non-SE neurons). This enhanced firing results from a cAMP-dependent protein kinase A-mediated inhibition of KCa3.1, a subclass of Ca2+-gated K+ channels generating the slow afterhyperpolarizing Ca2+-gated K+ current (IsAHP). The inhibition of KCa3.1 in post-SE neurons leads to a marked reduction in amplitude of the IsAHP that evolves during repetitive firing, as well as in amplitude of the associated Ca2+-dependent component of the slow afterhyperpolarization potential (KCa-sAHP). Here we show that KCa3.1 inhibition in post-SE neurons is induced by corticotropin releasing factor (CRF) through its Type 1 receptor (CRF1R). Acute application of CRF1R antagonists restores KCa3.1 activity in post-SE neurons, normalizing KCa-sAHP/IsAHP amplitudes and neuronal spike output, without affecting these variables in non-SE neurons. Moreover, pharmacological antagonism of CRF1Rs in vivo reduces the frequency of spontaneous recurrent seizures in post-SE chronically epileptic rats. These findings may provide a new vista for treating TLE.SIGNIFICANCE STATEMENT Epilepsy, a common neurologic disorder, often develops following a brain insult. Identifying key cellular mechanisms underlying acquired epilepsy is critical for developing effective antiepileptic therapies. In an experimental model of acquired epilepsy, principal hippocampal neurons manifest hyperexcitability because of downregulation of KCa3.1, a subtype of Ca2+-gated K+ ion channels. We show that KCa3.1 downregulation is mediated by corticotropin releasing factor (CRF) acting through its Type 1 receptor (CRF1R). Congruently, acute application of selective CRF1R antagonists restores KCa3.1 channel activity, leading to normalization of neuronal excitability. In the same model, injection of a CRF1R antagonist to epileptic animals markedly decreases the frequency of electrographic seizures. Therefore, targeting CRF1Rs may provide a new strategy in the treatment of acquired epilepsy.


Asunto(s)
Hormona Liberadora de Corticotropina , Epilepsia del Lóbulo Temporal , Epilepsia , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Estado Epiléptico , Animales , Hormona Liberadora de Corticotropina/metabolismo , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Masculino , Neuronas/fisiología , Ratas , Estado Epiléptico/metabolismo
3.
J Vis Exp ; (182)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35435914

RESUMEN

The auditory brainstem response (ABR) is an invaluable assay in clinical audiology, non-human animals, and human research. Despite the widespread use of ABRs in measuring auditory neural synchrony and estimating hearing sensitivity in other vertebrate model systems, methods for recording ABRs in the chicken have not been reported in nearly four decades. Chickens provide a robust animal research model because their auditory system is near functional maturation during late embryonic and early hatchling stages. We have demonstrated methods used to elicit one or two-channel ABR recordings using subdermal needle electrode arrays in chicken hatchlings. Regardless of electrode recording configuration (i.e., montage), ABR recordings included 3-4 positive-going peak waveforms within the first 6 ms of a suprathreshold click stimulus. Peak-to-trough waveform amplitudes ranged from 2-11 µV at high-intensity levels, with positive peaks exhibiting expected latency-intensity functions (i.e., increase in latency as a function of decreased intensity). Standardized earphone position was critical for optimal recordings as loose skin can occlude the ear canal, and animal movement can dislodge the stimulus transducer. Peak amplitudes were smaller, and latencies were longer as animal body temperature lowered, supporting the need for maintaining physiological body temperature. For young hatchlings (<3 h post-hatch day 1), thresholds were elevated by ~5 dB, peak latencies increased ~1-2 ms, and peak to trough amplitudes were decreased ~1 µV compared to older hatchlings. This suggests a potential conductive-related issue (i.e., fluid in the middle ear cavity) and should be considered for young hatchlings. Overall, the ABR methods outlined here permit accurate and reproducible recording of in-vivo auditory function in chicken hatchlings that could be applied to different stages of development. Such findings are easily compared to human and mammalian models of hearing loss, aging, or other auditory-related manipulations.


Asunto(s)
Pollos , Potenciales Evocados Auditivos del Tronco Encefálico , Estimulación Acústica/métodos , Animales , Umbral Auditivo/fisiología , Nervio Coclear/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Audición/fisiología , Mamíferos
4.
J Physiol ; 599(15): 3735-3754, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34148230

RESUMEN

KEY POINTS: Stimulation of postsynaptic muscarinic receptors was shown to excite principal hippocampal neurons by modulating several membrane ion conductances. We show here that activation of postsynaptic muscarinic receptors also causes neuronal excitation by inhibiting Na+ /K+ -ATPase activity. Muscarinic Na+ /K+ -ATPase inhibition is mediated by two separate signalling pathways that lead downstream to enhanced Na+ /K+ -ATPase phosphorylation by activating protein kinase C and protein kinase G. Muscarinic excitation through Na+ /K+ -ATPase inhibition is probably involved in cholinergic modulation of hippocampal activity and may turn out to be a widespread mechanism of neuronal excitation in the brain. ABSTRACT: Stimulation of muscarinic cholinergic receptors on principal hippocampal neurons enhances intrinsic neuronal excitability by modulating several membrane ion conductances. The electrogenic Na+ /K+ -ATPase (NKA; the 'Na+ pump') is a ubiquitous regulator of intrinsic neuronal excitability, generating a hyperpolarizing current to thwart excessive neuronal firing. Using electrophysiological and pharmacological methodologies in rat hippocampal slices, we show that neuronal NKA pumping activity is also subjected to cholinergic regulation. Stimulation of postsynaptic muscarinic, but not nicotinic, cholinergic receptors activates membrane-bound phospholipase C and hydrolysis of membrane-integral phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3 ). Along one signalling pathway, DAG activates protein kinase C (PKC). Along a second signalling pathway, IP3 causes Ca2+ release from the endoplasmic reticulum, facilitating nitric oxide (NO) production. The rise in NO levels stimulates cGMP synthesis by guanylate-cyclase, activating protein kinase G (PKG). The two pathways converge to cause partial NKA inhibition through enzyme phosphorylation by PKC and PKG, leading to a marked increase in intrinsic neuronal excitability. This novel mechanism of neuronal NKA regulation probably contributes to the cholinergic modulation of hippocampal activity in spatial navigation, learning and memory.


Asunto(s)
Hipocampo , ATPasa Intercambiadora de Sodio-Potasio , Animales , Colinérgicos , Proteínas Quinasas Dependientes de GMP Cíclico , Hipocampo/metabolismo , Neuronas/metabolismo , Ratas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
5.
J Neurosci ; 40(5): 974-995, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31959697

RESUMEN

Multiple insults to the brain lead to neuronal cell death, thus raising the question to what extent can lost neurons be replenished by adult neurogenesis. Here we focused on the hippocampus and especially the dentate gyrus (DG), a vulnerable brain region and one of the two sites where adult neuronal stem cells (NSCs) reside. While adult hippocampal neurogenesis was extensively studied with regard to its contribution to cognitive enhancement, we focused on their underestimated capability to repair a massively injured, nonfunctional DG. To address this issue, we inflicted substantial DG-specific damage in mice of either sex either by diphtheria toxin-based ablation of >50% of mature DG granule cells (GCs) or by prolonged brain-specific VEGF overexpression culminating in extensive, highly selective loss of DG GCs (thereby also reinforcing the notion of selective DG vulnerability). The neurogenic system promoted effective regeneration by increasing NSCs proliferation/survival rates, restoring a nearly original DG mass, promoting proper rewiring of regenerated neurons to their afferent and efferent partners, and regaining of lost spatial memory. Notably, concomitantly with the natural age-related decline in the levels of neurogenesis, the regenerative capacity of the hippocampus also subsided with age. The study thus revealed an unappreciated regenerative potential of the young DG and suggests hippocampal NSCs as a critical reservoir enabling recovery from catastrophic DG damage.SIGNIFICANCE STATEMENT Adult hippocampal neurogenesis has been extensively studied in the context of its role in cognitive enhancement, but whether, and to what extent can dentate gyrus (DG)-resident neural stem cells drive regeneration of an injured DG has remained unclear. Here we show that DG neurogenesis acts to replace lost neurons and restore lost functions even following massive (>50%) neuronal loss. Age-related decline of neurogenesis is paralleled by a progressive decline of regenerative capacity. Considering also the exceptional vulnerability of the DG to insults, these findings provide a further rationale for maintaining DG neurogenesis in adult life.


Asunto(s)
Giro Dentado/fisiopatología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Proliferación Celular , Supervivencia Celular , Giro Dentado/lesiones , Giro Dentado/patología , Femenino , Masculino , Ratones Transgénicos
6.
J Neurosci ; 39(50): 9914-9926, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31672789

RESUMEN

Brain insults, such as trauma, stroke, anoxia, and status epilepticus (SE), cause multiple changes in synaptic function and intrinsic properties of surviving neurons that may lead to the development of epilepsy. Experimentally, a single SE episode, induced by the convulsant pilocarpine, initiates the development of an epileptic condition resembling human temporal lobe epilepsy (TLE). Principal hippocampal neurons from such epileptic animals display enhanced spike output in response to excitatory stimuli compared with neurons from nonepileptic animals. This enhanced firing is negatively related to the size of the slow afterhyperpolarization (sAHP), which is reduced in the epileptic neurons. The sAHP is an intrinsic neuronal negative feedback mechanism consisting normally of two partially overlapping components produced by disparate mechanisms. One component is generated by activation of Ca2+-gated K+ (KCa) channels, likely KCa3.1, consequent to spike Ca2+ influx (the KCa-sAHP component). The second component is generated by enhancement of the electrogenic Na+/K+ ATPase (NKA) by spike Na+ influx (NKA-sAHP component). Here we show that the KCa-sAHP component is markedly reduced in male rat epileptic neurons, whereas the NKA-sAHP component is not altered. The KCa-sAHP reduction is due to the downregulation of KCa3.1 channels, mediated by cAMP-dependent protein kinase A (PKA). This sustained effect can be acutely reversed by applying PKA inhibitors, leading also to normalization of the spike output of epileptic neurons. We propose that the novel "acquired channelopathy" described here, namely, PKA-mediated downregulation of KCa3.1 activity, provides an innovative target for developing new treatments for TLE, hopefully overcoming the pharmacoresistance to traditional drugs.SIGNIFICANCE STATEMENT Epilepsy, a common neurological disorder, often develops following a brain insult. Identifying key molecular and cellular mechanisms underlying acquired epilepsy is critical for developing effective antiepileptic therapies. In an experimental model of acquired epilepsy, we show that principal hippocampal neurons become intrinsically hyperexcitable. This alteration is due predominantly to the downregulation of a ubiquitous class of potassium ion channels, KCa3.1, whose main function is to dampen neuronal excitability. KCa3.1 downregulation is mediated by the cAMP-dependent protein kinase A (PKA) signaling pathway. Most importantly, it can be acutely reversed by PKA inhibitors, leading to recovery of KCa3.1 function and normalization of neuronal excitability. The discovery of this novel epileptogenic mechanism hopefully will facilitate the development of more efficient pharmacotherapy for acquired epilepsy.


Asunto(s)
Potenciales de Acción/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/fisiopatología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Neuronas/fisiología , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Masculino , Ratas , Ratas Wistar
7.
J Neurosci ; 39(28): 5440-5451, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31085608

RESUMEN

The Na+/K+-ATPase (NKA) is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasmalemma of living cells. Numerous studies in non-neuronal tissues have shown that this transport mechanism is reversibly regulated by phosphorylation/dephosphorylation of the catalytic α subunit and/or associated proteins. In neurons, Na+/K+ transport by NKA is essential for almost all neuronal operations, consuming up to two-thirds of the neuron's energy expenditure. However, little is known about its cellular regulatory mechanisms. Here we have used an electrophysiological approach to monitor NKA transport activity in male rat hippocampal neurons in situ We report that this activity is regulated by a balance between serine/threonine phosphorylation and dephosphorylation. Phosphorylation by the protein kinases PKG and PKC inhibits NKA activity, whereas dephosphorylation by the protein phosphatases PP-1 and PP-2B (calcineurin) reverses this effect. Given that these kinases and phosphatases serve as downstream effectors in key neuronal signaling pathways, they may mediate the coupling of primary messengers, such as neurotransmitters, hormones, and growth factors, to the NKAs, through which multiple brain functions can be regulated or dysregulated.SIGNIFICANCE STATEMENT The Na+/K+-ATPase (NKA), known as the "Na+ pump," is a ubiquitous membrane-bound enzyme responsible for generating and maintaining the Na+ and K+ electrochemical gradients across the plasma membrane of living cells. In neurons, as in most types of cells, the NKA generates the negative resting membrane potential, which is the basis for almost all aspects of cellular function. Here we used an electrophysiological approach to monitor physiological NKA transport activity in single hippocampal pyramidal cells in situ We have found that neuronal NKA activity is oppositely regulated by phosphorylation and dephosphorylation, and we have identified the main protein kinases and phosphatases mediating this regulation. This fundamental form of NKA regulation likely plays a role in multiple brain functions.


Asunto(s)
Calcineurina/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteína Quinasa C/metabolismo , Proteína Fosfatasa 1/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Potenciales de la Membrana , Neuronas/metabolismo , Neuronas/fisiología , Fosforilación , Ratas , Ratas Wistar
8.
Hippocampus ; 28(5): 338-357, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29431274

RESUMEN

In many types of CNS neurons, repetitive spiking produces a slow afterhyperpolarization (sAHP), providing sustained, intrinsically generated negative feedback to neuronal excitation. Changes in the sAHP have been implicated in learning behaviors, in cognitive decline in aging, and in epileptogenesis. Despite its importance in brain function, the mechanisms generating the sAHP are still controversial. Here we have addressed the roles of M-type K+ current (IM ), Ca2+ -gated K+ currents (ICa(K) 's) and Na+ /K+ -ATPases (NKAs) current to sAHP generation in adult rat CA1 pyramidal cells maintained at near-physiological temperature (35 °C). No evidence for IM contribution to the sAHP was found in these neurons. Both ICa(K) 's and NKA current contributed to sAHP generation, the latter being the predominant generator of the sAHP, particularly when evoked with short trains of spikes. Of the different NKA isoenzymes, α1 -NKA played the key role, endowing the sAHP a steep voltage-dependence. Thus normal and pathological changes in α1 -NKA expression or function may affect cognitive processes by modulating the inhibitory efficacy of the sAHP.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Potenciales de la Membrana/fisiología , Canales de Potasio Calcio-Activados/metabolismo , Células Piramidales/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Fármacos del Sistema Nervioso Central/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Células Piramidales/efectos de los fármacos , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Técnicas de Cultivo de Tejidos
9.
Indian J Clin Biochem ; 27(4): 333-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24082456

RESUMEN

Abnormal glomerular permeability is the primary step towards the glomerulosclerosis. The progression rate of glomerulosclerosis is proportionate to abundance and severity of lesions created at incipient stage, which is reflected as proteinuria even though eGFR remains in the normal range. Therefore, there is a current need to find out the association between relative risks for the factors leading to proteinuria. The relations could be more informative, if it is with respect to the macromolecules like "IgG" excretion in urine. Type 2 diabetic patients were selected for this study with eGFR > 75 ml/min/1.73 m(2) and grouped into four quartiles based on UIgGCR. The markers of key factors affecting progression of proteinuria were estimated through biochemical tests. The impact of these markers on proteinuria was accessed by applying multinomial logistic regression. The adjusted odds ratio for the UGAGCR was 1.186 (95 % CI: 1.061-1.327) P < 0.003 in highest quartiles of UIgGCR, followed by odds ratio for markers of collagen catabolism 1.051 (95 % CI: 1.025-1.079) P < 0.001, and USACR 1.044 (95 % CI: 1.013-1.077) P < 0.006 respectively. The marker of glycation, i.e., glycated hemoglobin showed the highest odds ratio 5.449 (95 % CI: 1.132-26.236) P < 0.035. In addition, odds for the systolic blood pressure was observed 1.387 (95 % CI: 1.124-1.712) P < 0.002. The higher odds inform and could help to discriminate the diabetic patients with fast progressive diabetic nephropathy. The study describes critical relationship between the urinary excretion of IgG and factors leading to proteinuria in type 2 diabetic patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...