Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fungal Biol Biotechnol ; 10(1): 10, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138367

RESUMEN

BACKGROUND: Drought stress is currently the primary abiotic stress factor for crop loss worldwide. Although drought stress reduces the crop yield significantly, species and genotypes differ in their stress response; some tolerate the stress effect while others not. In several systems, it has been shown that, some of the beneficial soil microbes ameliorate the stress effect and thereby, minimizing yield losses under stress conditions. Realizing the importance of beneficial soil microbes, a field experiment was conducted to study the effect of selected microbial inoculants namely, N-fixing bacteria, Bradyrhizobium liaoningense and P-supplying arbuscular mycorrhizal fungus, Ambispora leptoticha on growth and performance of a drought susceptible and high yielding soybean cultivar, MAUS 2 under drought condition. RESULTS: Drought stress imposed during flowering and pod filling stages showed that, dual inoculation consisting of B. liaoningense and A. leptoticha improved the physiological and biometric characteristics including nutrient uptake and yield under drought conditions. Inoculated plants showed an increased number of pods and pod weight per plant by 19% and 34% respectively, while the number of seeds and seed weight per plant increased by 17% and 32% respectively over un-inoculated plants under drought stress condition. Further, the inoculated plants showed higher chlorophyll and osmolyte content, higher detoxifying enzyme activity, and higher cell viability because of less membrane damage compared to un-inoculated plants under stress condition. In addition, they also showed higher water use efficiency coupled with more nutrients accumulation besides exhibiting higher load of beneficial microbes. CONCLUSION: Dual inoculation of soybean plants with beneficial microbes would alleviate the drought stress effects, thereby allowing normal plants' growth under stress condition. The study therefore, infers that AM fungal and rhizobia inoculation seems to be necessary when soybean is to be cultivated under drought or water limiting conditions.

2.
Front Plant Sci ; 13: 890551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620681

RESUMEN

Abiotic stressors such as drought and heat predispose chickpea plants to pathogens of key importance leading to significant crop loss under field conditions. In this study, we have investigated the influence of drought and high temperature on the incidence and severity of dry root rot disease (caused by Macrophomina phaseolina) in chickpea, under extensive on- and off-season field trials and greenhouse conditions. We explored the association between drought tolerance and dry root rot resistance in two chickpea genotypes, ICC 4958 and JG 62, with contrasting resistance to dry root rot. In addition, we extensively analyzed various patho-morphological and root architecture traits altered by combined stresses under field and greenhouse conditions in these genotypes. We further observed the role of edaphic factors in dry root rot incidence under field conditions. Altogether, our results suggest a strong negative correlation between the plant water relations and dry root rot severity in chickpeas, indicating an association between drought tolerance and dry root rot resistance. Additionally, the significant role of heat stress in altering the dynamics of dry root rot and the importance of combinatorial screening of chickpea germplasm for dry root rot resistance, drought, and heat stress have been revealed.

3.
Sci Rep ; 11(1): 6568, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753791

RESUMEN

Rhizoctonia bataticola causes dry root rot (DRR), a devastating disease in chickpea (Cicer arietinum). DRR incidence increases under water deficit stress and high temperature. However, the roles of other edaphic and environmental factors remain unclear. Here, we performed an artificial neural network (ANN)-based prediction of DRR incidence considering DRR incidence data from previous reports and weather factors. ANN-based prediction using the backpropagation algorithm showed that the combination of total rainfall from November to January of the chickpea-growing season and average maximum temperature of the months October and November is crucial in determining DRR occurrence in chickpea fields. The prediction accuracy of DRR incidence was 84.6% with the validation dataset. Field trials at seven different locations in India with combination of low soil moisture and pathogen stress treatments confirmed the impact of low soil moisture on DRR incidence under different agroclimatic zones and helped in determining the correlation of soil factors with DRR incidence. Soil phosphorus, potassium, organic carbon, and clay content were positively correlated with DRR incidence, while soil silt content was negatively correlated. Our results establish the role of edaphic and other weather factors in chickpea DRR disease incidence. Our ANN-based model will allow the location-specific prediction of DRR incidence, enabling efficient decision-making in chickpea cultivation to minimize yield loss.


Asunto(s)
Cicer/microbiología , Susceptibilidad a Enfermedades , Enfermedades de las Plantas/etiología , Raíces de Plantas/microbiología , Suelo/química , Deshidratación , Sequías , Modelos Teóricos , Fenotipo , Desarrollo de la Planta , Estrés Fisiológico , Agua
4.
Sci Rep ; 9(1): 5577, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944350

RESUMEN

Drought stress and pathogen infection simultaneously occur in the field. In this study, the interaction of these two stresses with chickpea, their individual and combined effect and the net impact on plant growth and yield traits were systematically assessed under field and confined pot experiments. The field experiments were conducted for four consecutive years from 2014-15 to 2017-18 at different locations of India. Different irrigation regimes were maintained to impose mild to severe drought stress, and natural incidence of the pathogen was considered as pathogen stress. We observed an increased incidence of fungal diseases namely, dry root rot (DRR) caused by Rhizoctonia bataticola, black root rot (BRR) caused by Fusarium solani under severe drought stress compared to well-irrigated field condition. Similar to field experiments, pot experiments also showed severe disease symptoms of DRR and BRR in the presence of drought compared to pathogen only stress. Overall, the results from this study not only showed the impact of combined drought and DRR stress but also provided systematic data, first of its kind, for the use of researchers.


Asunto(s)
Cicer/microbiología , Cicer/fisiología , Infecciones/microbiología , Infecciones/fisiopatología , Enfermedades de las Plantas/microbiología , Estrés Fisiológico/fisiología , Sequías , Fusarium/patogenicidad , India , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Rhizoctonia/patogenicidad , Microbiología del Suelo
5.
PLoS One ; 11(6): e0157522, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27314499

RESUMEN

In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.


Asunto(s)
Helianthus/genética , Estrés Oxidativo/genética , Proteínas de Plantas/biosíntesis , Transcriptoma/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Genotipo , Helianthus/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...