Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 8(5): 568-602, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36928662

RESUMEN

Low-dimensional copper oxide nanostructures are very promising building blocks for various functional materials targeting high-demanded applications, including energy harvesting and transformation systems, sensing and catalysis. Featuring a very high surface-to-volume ratio and high chemical reactivity, these materials have attracted wide interest from researchers. Currently, extensive research on the fabrication and applications of copper oxide nanostructures ensures the fast progression of this technology. In this article we briefly outline some of the most recent, mostly within the past two years, innovations in well-established fabrication technologies, including oxygen plasma-based methods, self-assembly and electric-field assisted growth, electrospinning and thermal oxidation approaches. Recent progress in several key types of leading-edge applications of CuO nanostructures, mostly for energy, sensing and catalysis, is also reviewed. Besides, we briefly outline and stress novel insights into the effect of various process parameters on the growth of low-dimensional copper oxide nanostructures, such as the heating rate, oxygen flow, and roughness of the substrates. These insights play a key role in establishing links between the structure, properties and performance of the nanomaterials, as well as finding the cost-and-benefit balance for techniques that are capable of fabricating low-dimensional CuO with the desired properties and facilitating their integration into more intricate material architectures and devices without the loss of original properties and function.

2.
Nanomaterials (Basel) ; 10(6)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560290

RESUMEN

Nitrogen-doped graphene-based aerogels with three levels of hierarchically organized pores were prepared via a simple environmentally friendly process, and successfully tested in supercapacitor applications. Mesopores and macropores were formed during the aerogel preparation followed by carbonization and its chemical activation by potassium hydroxide (KOH). These mesopores and macropores consist of amorphous carbon and a 3D graphene framework. Thermal treatment at 700 °C, 800 °C, 900 °C in N2 atmosphere was done to etch out the amorphous carbon and obtain a stable N-doped 3D graphene. Specific capacitance values obtained from the electrochemical measurements are in the range of 232-170 F× g-1. The thus fabricated structures showed excellent cyclic stability, suggesting that these materials have potential as electrodes for solid asymmetric supercapacitors.

3.
Sci Rep ; 7(1): 1591, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28484209

RESUMEN

Reduced graphene oxide (rGO) is a promising antibacterial material, the efficacy of which can be further enhanced by the addition of silver nanoparticles (nAg). In this study, the mechanisms of antibacterial activity of rGO-nAg nanocomposite against several important human pathogenic multi-drug resistant bacteria, namely Gram-positive coccal Staphylococcus aureus and Gram-negative rod-shaped Escherichia coli and Proteus mirabilis are investigated. At the same concentration (100 µg/ml), rGO-nAg nanocomposite was significantly more effective against all three pathogens than either rGO or nAg. The nanocomposite was equally active against P. mirabilis and S. aureus as systemic antibiotic nitrofurantoin, and significantly more effective against E. coli. Importantly, the inhibition was much faster in the case of rGO-nAg nanocomposite compared to nitrofurantoin, attributed to the synergistic effects of rGO-nAg mediated contact killing and oxidative stress. This study may provide new insights for the better understanding of antibacterial actions of rGO-nAg nanocomposite and for the better designing of graphene-based antibiotics or other biomedical applications.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Grafito , Nanopartículas del Metal , Óxidos , Plata , Sinergismo Farmacológico , Grafito/química , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Viabilidad Microbiana , Nanocompuestos/química , Nanocompuestos/ultraestructura , Óxidos/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...