Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834408

RESUMEN

The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores mTOR , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
2.
Biomedicines ; 11(10)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37892995

RESUMEN

Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...