Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gene ; 808: 145976, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34592351

RESUMEN

Soybean is a major source of edible protein and oil. Oil content is a quantitative trait that is significantly determined by genetic and environmental factors. Over the past 30 years, a large volume of soybean genetic, genomic, and transcriptomic data have been accumulated. Nevertheless, integrative analyses of such data remain scarce, in spite of their importance for crop improvement. We hypothesized that the co-occurrence of genomic regions for oil-related traits in different studies may reveal more stable regions encompassing important genetic determinants of oil content and quality in soybean. We integrated publicly available data, obtained with distinct techniques, to discover and prioritize candidate genes involved in oil biosynthesis and regulation in soybean. We detected key fatty acid biosynthesis genes (e.g., BCCP2 and ACCase, FADs, KAS family proteins) and several transcription factors, which are likely regulators of oil biosynthesis. In addition, we identified new candidates for seed oil accumulation and quality, such as Glyma.03G213300 and Glyma.19G160700, which encode a translocator protein homolog and a histone acetyltransferase, respectively. Further, oil and protein genomic hotspots are strongly associated with breeding and not with domestication, suggesting that soybean domestication prioritized other traits. The genes identified here are promising targets for breeding programs and for the development of soybean lines with increased oil content and quality.


Asunto(s)
Glycine max/genética , Aceite de Soja/biosíntesis , Aceite de Soja/genética , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Fitomejoramiento/métodos , Aceites de Plantas , Polimorfismo de Nucleótido Simple/genética , Proteómica/métodos , Sitios de Carácter Cuantitativo/genética , Semillas/genética
2.
Planta ; 252(6): 104, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33196909

RESUMEN

MAIN CONCLUSION: We report a soybean gene co-expression network built with data from 1284 RNA-Seq experiments, which was used to identify important regulators, modules and to elucidate the fates of gene duplicates. Soybean (Glycine max (L.) Merr.) is one of the most important crops worldwide, constituting a major source of protein and edible oil. Gene co-expression networks (GCN) have been extensively used to study transcriptional regulation and evolution of genes and genomes. Here, we report a soybean GCN using 1284 publicly available RNA-Seq samples from 15 distinct tissues. We found modules that are differentially regulated in specific tissues, comprising processes such as photosynthesis, gluconeogenesis, lignin metabolism, and response to biotic stress. We identified transcription factors among intramodular hubs, which probably integrate different pathways and shape the transcriptional landscape in different conditions. The top hubs for each module tend to encode proteins with critical roles, such as succinate dehydrogenase and RNA polymerase subunits. Importantly, gene essentiality was strongly correlated with degree centrality and essential hubs were enriched in genes involved in nucleic acids metabolism and regulation of cell replication. Using a guilt-by-association approach, we predicted functions for 93 of 106 hubs without functional description in soybean. Most of the duplicated genes had different transcriptional profiles, supporting their functional divergence, although paralogs originating from whole-genome duplications (WGD) are more often preserved in the same module than those from other mechanisms. Together, our results highlight the importance of GCN analysis in unraveling key functional aspects of the soybean genome, in particular those associated with hub genes and WGD events.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Glycine max , Perfilación de la Expresión Génica , Glycine max/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant J ; 103(5): 1894-1909, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445587

RESUMEN

Soybean (Glycine max [L.] Merr.) is a major crop in animal feed and human nutrition, mainly for its rich protein and oil contents. The remarkable rise in soybean transcriptome studies over the past 5 years generated an enormous amount of RNA-seq data, encompassing various tissues, developmental conditions and genotypes. In this study, we have collected data from 1298 publicly available soybean transcriptome samples, processed the raw sequencing reads and mapped them to the soybean reference genome in a systematic fashion. We found that 94% of the annotated genes (52 737/56 044) had detectable expression in at least one sample. Unsupervised clustering revealed three major groups, comprising samples from aerial, underground and seed/seed-related parts. We found 452 genes with uniform and constant expression levels, supporting their roles as housekeeping genes. On the other hand, 1349 genes showed heavily biased expression patterns towards particular tissues. A transcript-level analysis revealed that 95% (70 963 of 74 490) of the assembled transcripts have intron chains exactly matching those from known transcripts, whereas 3256 assembled transcripts represent potentially novel splicing isoforms. The dataset compiled here constitute a new resource for the community, which can be downloaded or accessed through a user-friendly web interface at http://venanciogroup.uenf.br/resources/. This comprehensive transcriptome atlas will likely accelerate research on soybean genetics and genomics.


Asunto(s)
Atlas como Asunto , Glycine max/genética , ARN de Planta/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Genes Esenciales/genética , Genes de Plantas/genética
4.
Plant J ; 103(2): 726-741, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32270526

RESUMEN

Transcription factors (TFs) are essential for plant growth and development. Several legumes (e.g. soybean) are rich sources of protein and oil and have great economic importance. Here we report a phylogenomic analysis of TF families in legumes and their potential association with important traits (e.g. nitrogen fixation). We used TF DNA-binding domains to systematically screen the genomes of 15 leguminous and five non-leguminous species. Transcription factor orthologous groups (OGs) were used to estimate OG sizes in ancestral nodes using a gene birth-death model, which allowed the identification of lineage-specific expansions. The OG analysis and rate of synonymous substitutions show that major TF expansions are strongly associated with whole-genome duplication (WGD) events in the legume (approximately 58 million years ago) and Glycine (approximately 13 million years ago) lineages, which account for a large fraction of the Phaseolus vulgaris and Glycine max TF repertoires. Of the 3407 G. max TFs, 1808 and 676 have homeologs within single syntenic regions in Phaseolus vulgaris and Vitis vinifera, respectively. We found a trend for TFs expanded in legumes to be preferentially transcribed in roots and nodules, supporting their recruitment early in the evolution of nodulation in the legume clade. Some families also showed count differences between G. max and the wild soybean Glycine soja, including genes located within important quantitative trait loci. Our findings strongly support the roles of two WGDs in shaping the TF repertoires in the legume and Glycine lineages, and these are probably related to important aspects of legume and soybean biology.


Asunto(s)
Fabaceae/genética , Proteínas de Plantas/genética , Poliploidía , Factores de Transcripción/genética , Fabaceae/metabolismo , Genes de Plantas/genética , Genoma de Planta/genética , Phaseolus/genética , Filogenia , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Glycine max/genética , Factores de Transcripción/metabolismo , Vitis/genética
5.
FEBS J ; 286(19): 3797-3810, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31319017

RESUMEN

Klebsiella aerogenes is an important pathogen in healthcare-associated infections. Nevertheless, in comparison to other clinically important pathogens, K. aerogenes population structure, genetic diversity, and pathogenicity remain poorly understood. Here, we elucidate K. aerogenes clonal complexes (CCs) and genomic features associated with resistance and virulence. We present a detailed description of the population structure of K. aerogenes based on 97 publicly available genomes by using both multilocus sequence typing and single-nucleotide polymorphisms extracted from the core genome. We also assessed virulence and resistance profiles using Virulence Finder Database and Comprehensive Antibiotic Resistance Database, respectively. We show that K. aerogenes has an open pangenome and a large effective population size, which account for its high genomic diversity and support that negative selection prevents fixation of most deleterious alleles. The population is structured in at least 10 CCs, including two novel ones identified here, CC9 and CC10. The repertoires of resistance genes comprise a high number of antibiotic efflux proteins as well as narrow- and extended-spectrum ß-lactamases. Regarding the population structure, we identified two clusters based on virulence profiles because of the presence of the toxin-encoding clb operon and the siderophore production genes, irp and ybt. Notably, CC3 comprises the majority of K. aerogenes isolates associated with hospital outbreaks, emphasizing the importance of constant monitoring of this pathogen. Collectively, our results may provide a foundation for the development of new therapeutic and surveillance strategies worldwide.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Enterobacter aerogenes/genética , Enterobacter aerogenes/patogenicidad , Genoma Bacteriano , Virulencia/genética , Bacteriófagos/aislamiento & purificación , Enterobacter aerogenes/efectos de los fármacos , Plásmidos
6.
J Phys Chem B ; 123(21): 4562-4570, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31050900

RESUMEN

The absence of detergent and curvature makes nanodiscs excellent membrane mimetics. The lack of structural and mechanistic model of polymer-encapsulated lipid nanodiscs limits their use in the study of the structure, dynamics, and functions of membrane proteins. In this study, we parameterized and optimized the coarse-graining (CG) bead mapping for two differently charged and functionalized copolymers, containing styrene-maleic acid (SMAEA) and polymethacrylate (PMAQA), for the Martini force-field framework and showed nanodisc formation (<8 nm diameter) on a time scale of tens of microseconds using molecular dynamics (MD) simulations. Structural models of ∼2.0 or 4.8 kDa PMAQA and ∼2.2 kDa SMAEA polymer-based lipid nanodiscs highlight the importance of the polymer chemical structure, size, and polymer-lipid ratio in the optimization of the nanodisc structure. The ideal spatial arrangement of polymers in nanodiscs, nanodisc size, and thermal stability obtained from our MD simulation correlates well with the experimental observations. The polymer-nanodiscs were tested for the reconstitution of single-pass or multipass transmembrane proteins. We expect this study to be useful in the development of novel polymer-based lipid nanodiscs and for the structural studies of membrane proteins.


Asunto(s)
Precursor de Proteína beta-Amiloide/química , Integrina beta3/química , Maleatos/química , Nanopartículas/química , Ácidos Polimetacrílicos/química , Poliestirenos/química , Rodopsinas Microbianas/química , Secuencia de Aminoácidos , Dimiristoilfosfatidilcolina/química , Humanos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Nostoc/química , Fosfatidilcolinas/química
7.
An Acad Bras Cienc ; 91(suppl 1): e20180762, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30569971

RESUMEN

Aminoglycosides are a class of antibiotics that play a key role in antimicrobial treatment of Multidrug resistant (MDR) Gram-negative bacilli, typically in combination with ß-lactams. Ribosomal 16S RNA modification by methyltransferases (e.g. RmtG) is an aminoglycoside resistance mechanism that, along with the occurrence carbapenem-resistant Enterobacteriaceae (CRE), has become a clinical concern. In Brazil, rmtG genes were initially reported in Klebsiella pneumoniae, and monitoring isolates from other species carrying this gene is critical for epidemiological studies and to prevent dissemination. Here we report the presence of rmtG in Klebisella aerogenes D3 and characterize its genetic context in comparison to isolates from other species. Further, we performed a phylogenetic reconstruction of 900 16S rRNA methyltransferases (16S-RMTases) and methyltransferase-related proteins. We show that, in K. aerogenes D3, rmtG co-occurs with sul2, near a transposon with an IS91-like insertion sequence. Resistome analysis revealed the co-production of RmtG and CTX-M-59. Ongoing surveillance of 16S-RMTases is crucial to delay the dissemination of such multiresistant isolates. Our results also highlight the reduction in treatment options for CRE infections, as well as the need of expanding prevention measures of these pathogens worldwide.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Klebsiella/enzimología , Metiltransferasas/genética , ARN Ribosómico 16S/genética , Anciano , Brasil , Humanos , Klebsiella/genética , Masculino , Tipificación de Secuencias Multilocus , Filogenia
8.
Noncoding RNA ; 4(4)2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297664

RESUMEN

Long non-coding RNAs (lncRNAs) are involved in multiple regulatory pathways and its versatile form of action has disclosed a new layer in gene regulation. LncRNAs have their expression levels modulated during plant development, and in response to stresses with tissue-specific functions. In this study, we analyzed lncRNA from leaf samples collected from the legume Copaifera langsdorffii Desf. (copaíba) present in two divergent ecosystems: Cerrado (CER; Ecological Station of Botanical Garden in Brasília, Brazil) and Atlantic Rain Forest (ARF; Rio de Janeiro, Brazil). We identified 8020 novel lncRNAs, and they were compared to seven Fabaceae genomes and transcriptomes, to which 1747 and 2194 copaíba lncRNAs were mapped, respectively, to at least one species. The secondary structures of the lncRNAs that were conserved and differentially expressed between the populations were predicted using in silico methods. A few selected lncRNA were confirmed by RT-qPCR in the samples from both biomes; Additionally, the analysis of the lncRNA sequences predicted that some might act as microRNA (miRNA) targets or decoys. The emerging studies involving lncRNAs function and conservation have shown their involvement in several types of biotic and abiotic stresses. Thus, the conservation of lncRNAs among Fabaceae species considering their rapid turnover, suggests they are likely to have been under functional conservation pressure. Our results indicate the potential involvement of lncRNAs in the adaptation of C. langsdorffii in two different biomes.

9.
Plant Mol Biol ; 97(4-5): 435-449, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29956113

RESUMEN

KEY MESSAGE: Here we uncover the major evolutionary events shaping the evolution of the GID1 family of gibberellin receptors in land plants at the sequence, structure and gene expression levels. Gibberellic acid (gibberellin, GA) controls key developmental processes in the life cycle of land plants. By interacting with the GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor, GA regulates the expression of a wide range of genes through different pathways. Here we report the systematic identification and classification of GID1s in 54 plants genomes, encompassing from bryophytes and lycophytes, to several monocots and eudicots. We investigated the evolutionary relationship of GID1s using a comparative genomics framework and found strong support for a previously proposed phylogenetic classification of this family in land plants. We identified lineage-specific expansions of particular subfamilies (i.e. GID1ac and GID1b) in different eudicot lineages (e.g. GID1b in legumes). Further, we found both, shared and divergent structural features between GID1ac and GID1b subgroups in eudicots that provide mechanistic insights on their functions. Gene expression data from several species show that at least one GID1 gene is expressed in every sampled tissue, with a strong bias of GID1b expression towards underground tissues and dry legume seeds (which typically have low GA levels). Taken together, our results indicate that GID1ac retained canonical GA signaling roles, whereas GID1b specialized in conditions of low GA concentrations. We propose that this functional specialization occurred initially at the gene expression level and was later fine-tuned by mutations that conferred greater GA affinity to GID1b, including a Phe residue in the GA-binding pocket. Finally, we discuss the importance of our findings to understand the diversification of GA perception mechanisms in land plants.


Asunto(s)
Embryophyta/genética , Genómica , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Evolución Biológica , Embryophyta/crecimiento & desarrollo , Embryophyta/fisiología , Exones/genética , Intrones/genética , Modelos Moleculares , Mutación , Filogenia , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Transducción de Señal
10.
Artículo en Inglés | MEDLINE | ID: mdl-25125444

RESUMEN

A Leishmania Microsatellite Database (LeishMicrosatDB) is reported for genome wise mining of microsatellites in six Leishmania species, using in silico techniques. This was created to provide parasitologists a platform to understand the genome characterization, mapping, phylogeny and evolutionary analysis. The present version of the database contains 1,738,669 simple sequence repeats of which 181 s756 repeats are present in compound form. The repeats can be sought in a chromosome using input parameters such as repeat type (mono- hexa), coding status, repeat unit length and repeat sequence motif. The genic repeats have been further hyperlinked with their corresponding locus id, and the database is appended with primer3 plus for primer designing of selected repeats with left and right flanking sequences up to 250 bp. Information on clustering and polymorphic repeats can also be retrieved. This database may also be adopted as a tool to study the relative occurrence and distribution of microsatellites across the parasitic genome. The database can enable a biologist to select markers at desired intervals over the chromosomes, and can be accessed as an open source repository at http://biomedinformri.com/leishmicrosat. DATABASE URL: http://biomedinformri.com/leishmicrosat.


Asunto(s)
Bases de Datos Genéticas , Genoma de Protozoos/genética , Internet , Leishmania/genética , Genómica , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA