Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39179417

RESUMEN

The management of acute myocarditis (AM) is addressed in multiple clinical guidelines. We systematically reviewed current guidelines developed by national and international medical organizations on the management of AM to aid clinical practice. Publications in MEDLINE, EMBASE and Cochrane were identified between 1 January 2013 and 12 April 2024. Additionally, the websites of relevant organizations and the Guidelines International Network, Guideline Central, and NHS knowledge and library hub were reviewed. Two reviewers independently screened titles and abstracts, two reviewers assessed the rigour of guideline development, and one reviewer extracted the recommendations. Two of the three guidelines identified showed good rigour of development. Those rigorously developed agreed on the definition of AM, sampling serum troponin as part of the workflow for AM, testing for B-type natriuretic peptides in heart failure, key diagnostic imaging in the form of cardiovascular magnetic resonance, coronary angiography to exclude significant coronary disease, indications for endomyocardial biopsy (EMB), and indications for immunosuppression and advanced treatment options. Discrepancies exist in sampling creatine kinase-myocardial bound as a marker of myocardial injury, indications for EMB, and indications for immunosuppression and treatment of uncomplicated AM. Evidence is lacking for the use of 18F-Fluorodeoxyglucose Positron Emission Tomography for myocardial imaging, exercise restriction, follow-up measures and genetic testing, and there are few high-quality randomized trials to support treatment recommendations. Recommendations for management of AM in the guidelines have largely been developed from expert opinion rather than trial data.

2.
Front Physiol ; 15: 1428709, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206383

RESUMEN

Introduction: Patients with hypertrophic cardiomyopathy (HCM) are at risk for lethal ventricular arrhythmia, but the electrophysiological substrate behind this is not well-understood. We used non-invasive electrocardiographic imaging to characterize patients with HCM, including cardiac arrest survivors. Methods: HCM patients surviving ventricular fibrillation or hemodynamically unstable ventricular tachycardia (n = 17) were compared to HCM patients without a personal history of potentially lethal arrhythmia (n = 20) and a pooled control group with structurally normal hearts. Subjects underwent exercise testing by non-invasive electrocardiographic imaging to estimate epicardial electrophysiology. Results: Visual inspection of reconstructed epicardial HCM maps revealed isolated patches of late activation time (AT), prolonged activation-recovery intervals (ARIs), as well as reversal of apico-basal trends in T-wave inversion and ARI compared to controls (p < 0.005 for all). AT and ARI were compared between groups. The pooled HCM group had longer mean AT (60.1 ms vs. 52.2 ms, p < 0.001), activation dispersion (55.2 ms vs. 48.6 ms, p = 0.026), and mean ARI (227 ms vs. 217 ms, p = 0.016) than structurally normal heart controls. HCM ventricular arrhythmia survivors could be differentiated from HCM patients without a personal history of life-threatening arrhythmia by longer mean AT (63.2 ms vs. 57.4 ms, p = 0.007), steeper activation gradients (0.45 ms/mm vs. 0.36 ms/mm, p = 0.011), and longer mean ARI (234.0 ms vs. 221.4 ms, p = 0.026). A logistic regression model including whole heart mean activation time and activation recovery interval could identify ventricular arrhythmia survivors from the HCM cohort, producing a C statistic of 0.76 (95% confidence interval 0.72-0.81), with an optimal sensitivity of 78.6% and a specificity of 79.8%. Discussion: The HCM epicardial electrotype is characterized by delayed, dispersed conduction and prolonged, dispersed activation-recovery intervals. Combination of electrophysiologic measures with logistic regression can improve differentiation over single variables. Future studies could test such models prospectively for risk stratification of sudden death due to HCM.

3.
Circ Arrhythm Electrophysiol ; 17(7): e012570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012930

RESUMEN

BACKGROUND: Patients with refractory, symptomatic left ventricular (LV) mid-cavity obstructive (LVMCO) hypertrophic cardiomyopathy have few therapeutic options. Right ventricular pacing is associated with modest hemodynamic and symptomatic improvement, and LV pacing pilot data suggest therapeutic potential. We hypothesized that site-specific pacing would reduce LVMCO gradients and improve symptoms. METHODS: Patients with symptomatic-drug-refractory LVMCO were recruited for a randomized, blinded trial of personalized prescription of pacing (PPoP). Multiple LV and apical right ventricular pacing sites were assessed during an invasive hemodynamic study of multisite pacing. Patient-specific pacing-site and atrioventricular delays, defining PPoP, were selected on the basis of LVMCO gradient reduction and acceptable pacing parameters. Patients were randomized to 6 months of active PPoP or backup pacing in a crossover design. The primary outcome examined invasive gradient change with best-site pacing. Secondary outcomes assessed quality of life and exercise following randomization to PPoP. RESULTS: A total of 17 patients were recruited; 16 of whom met primary end points. Baseline New York Heart Association was 3±0.6, despite optimal medical therapy. Hemodynamic effects were assessed during pacing at the right ventricular apex and at a mean of 8 LV sites. The gradients in all 16 patients fell with pacing, with maximum gradient reduction achieved via LV pacing in 14 (88%) patients and right ventricular apex in 2. The mean baseline gradient of 80±29 mm Hg fell to 31±21 mm Hg with best-site pacing, a 60% reduction (P<0.0001). One cardiac vein perforation occurred in 1 case, and 15 subjects entered crossover; 2 withdrawals occurred during crossover. Of the 13 completing crossover, 9 (69%) chose active pacing in PPoP configuration as preferred setting. PPoP was associated with improved 6-minute walking test performance (328.5±99.9 versus 285.8±105.5 m; P=0.018); other outcome measures also indicated benefit with PPoP. CONCLUSIONS: In a randomized placebo-controlled trial, PPoP reduces obstruction and improves exercise performance in severely symptomatic patients with LVMCO. REGISTRATION: URL: https://clinicaltrials.gov/study; Unique Identifier: NCT03450252.


Asunto(s)
Estimulación Cardíaca Artificial , Cardiomiopatía Hipertrófica , Estudios Cruzados , Función Ventricular Izquierda , Humanos , Masculino , Femenino , Estimulación Cardíaca Artificial/métodos , Persona de Mediana Edad , Cardiomiopatía Hipertrófica/terapia , Cardiomiopatía Hipertrófica/fisiopatología , Cardiomiopatía Hipertrófica/diagnóstico , Resultado del Tratamiento , Anciano , Calidad de Vida , Factores de Tiempo , Hemodinámica , Obstrucción del Flujo Ventricular Externo/fisiopatología , Obstrucción del Flujo Ventricular Externo/terapia , Obstrucción del Flujo Ventricular Externo/diagnóstico , Tolerancia al Ejercicio , Función Ventricular Derecha , Recuperación de la Función
4.
Acta Myol ; 42(2-3): 43-52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090549

RESUMEN

Lamins A/C (encoded by LMNA gene) can lead to dilated cardiomyopathy (DCM). This pilot study sought to explore the postgenomic phenotype of end-stage lamin heart disease. Consecutive patients with end-stage lamin heart disease (LMNA-group, n = 7) and ischaemic DCM (ICM-group, n = 7) undergoing heart transplantation were prospectively enrolled. Samples were obtained from left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV) and interventricular septum (IVS), avoiding the infarcted myocardial segments in the ICM-group. Samples were analysed using a discovery 'shotgun' proteomics approach. We found that 990 proteins were differentially abundant between LMNA and ICM samples with the LA being most perturbed (16-fold more than the LV). Abundance of lamin A/C protein was reduced, but lamin B increased in LMNA LA/RA tissue compared to ICM, but not in LV/RV. Carbonic anhydrase 3 (CA3) was over-abundant across all LMNA tissue samples (LA, LV, RA, RV, and IVS) when compared to ICM. Transthyretin was more abundant in the LV/RV of LMNA compared to ICM, while sarcomeric proteins such as titin and cardiac alpha-cardiac myosin heavy chain were generally less abundant in RA/LA of LMNA. Protein expression profiling and enrichment analysis pointed towards sarcopenia, extracellular matrix remodeling, deficient myocardial energetics, redox imbalances, and abnormal calcium handling in LMNA samples. Compared to ICM, end-stage lamin heart disease is a biventricular but especially a biatrial disease appearing to have an abundance of lamin B, CA3 and transthyretin, potentially hinting to compensatory responses.


Asunto(s)
Cardiomiopatía Dilatada , Ventrículos Cardíacos , Humanos , Proteoma/genética , Prealbúmina/genética , Lamina Tipo B/genética , Proyectos Piloto , Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Atrios Cardíacos/metabolismo , Mutación
5.
Circulation ; 148(10): 808-818, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37463608

RESUMEN

BACKGROUND: In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate. METHODS: This was a multicenter collaboration to study 206 subjects: 101 patients with overt HCM (51 G+LVH+ and 50 G-LVH+), 77 patients with G+LVH-, and 28 matched healthy volunteers. All underwent 12-lead ECG, quantitative perfusion cardiac magnetic resonance imaging (measuring myocardial blood flow, myocardial perfusion reserve, and perfusion defects), and cardiac diffusion tensor imaging measuring fractional anisotropy (lower values expected with more disarray), mean diffusivity (reflecting myocyte packing/interstitial expansion), and second eigenvector angle (measuring sheetlet orientation). RESULTS: Compared with healthy volunteers, patients with overt HCM had evidence of altered microstructure (lower fractional anisotropy, higher mean diffusivity, and higher second eigenvector angle; all P<0.001) and MVD (lower stress myocardial blood flow and myocardial perfusion reserve; both P<0.001). Patients with G-LVH+ were similar to those with G+LVH+ but had elevated second eigenvector angle (P<0.001 after adjustment for left ventricular hypertrophy and fibrosis). In overt disease, perfusion defects were found in all G+ but not all G- patients (100% [51/51] versus 82% [41/50]; P=0.001). Patients with G+LVH- compared with healthy volunteers similarly had altered microstructure, although to a lesser extent (all diffusion tensor imaging parameters; P<0.001), and MVD (reduced stress myocardial blood flow [P=0.015] with perfusion defects in 28% versus 0 healthy volunteers [P=0.002]). Disarray and MVD were independently associated with pathological electrocardiographic abnormalities in both overt and subclinical disease after adjustment for fibrosis and left ventricular hypertrophy (overt: fractional anisotropy: odds ratio for an abnormal ECG, 3.3, P=0.01; stress myocardial blood flow: odds ratio, 2.8, P=0.015; subclinical: fractional anisotropy odds ratio, 4.0, P=0.001; myocardial perfusion reserve odds ratio, 2.2, P=0.049). CONCLUSIONS: Microstructural alteration and MVD occur in overt HCM and are different in G+ and G- patients. Both also occur in the absence of hypertrophy in sarcomeric mutation carriers, in whom changes are associated with electrocardiographic abnormalities. Measurable changes in myocardial microstructure and microvascular function are early-phenotype biomarkers in the emerging era of disease-modifying therapy.


Asunto(s)
Cardiomiopatía Hipertrófica , Hipertrofia Ventricular Izquierda , Humanos , Sarcómeros/genética , Imagen de Difusión Tensora , Predisposición Genética a la Enfermedad , Mutación , Cardiomiopatía Hipertrófica/diagnóstico , Fenotipo , Biomarcadores , Fibrosis
6.
Eur Heart J Cardiovasc Imaging ; 24(10): 1352-1360, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37309807

RESUMEN

AIMS: To describe hypertension-related cardiovascular magnetic resonance (CMR) phenotypes in the UK Biobank considering variations across patient populations. METHODS AND RESULTS: We studied 39 095 (51.5% women, mean age: 63.9 ± 7.7 years, 38.6% hypertensive) participants with CMR data available. Hypertension status was ascertained through health record linkage. Associations between hypertension and CMR metrics were estimated using multivariable linear regression adjusting for major vascular risk factors. Stratified analyses were performed by sex, ethnicity, time since hypertension diagnosis, and blood pressure (BP) control. Results are standardized beta coefficients, 95% confidence intervals, and P-values corrected for multiple testing. Hypertension was associated with concentric left ventricular (LV) hypertrophy (increased LV mass, wall thickness, concentricity index), poorer LV function (lower global function index, worse global longitudinal strain), larger left atrial (LA) volumes, lower LA ejection fraction, and lower aortic distensibility. Hypertension was linked to significantly lower myocardial native T1 and increased LV ejection fraction. Women had greater hypertension-related reduction in aortic compliance than men. The degree of hypertension-related LV hypertrophy was greatest in Black ethnicities. Increasing time since diagnosis of hypertension was linked to adverse remodelling. Hypertension-related remodelling was substantially attenuated in hypertensives with good BP control. CONCLUSION: Hypertension was associated with concentric LV hypertrophy, reduced LV function, dilated poorer functioning LA, and reduced aortic compliance. Whilst the overall pattern of remodelling was consistent across populations, women had greater hypertension-related reduction in aortic compliance and Black ethnicities showed the greatest LV mass increase. Importantly, adverse cardiovascular remodelling was markedly attenuated in hypertensives with good BP control.


Asunto(s)
Bancos de Muestras Biológicas , Hipertensión , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Hipertensión/diagnóstico por imagen , Hipertensión/epidemiología , Hipertensión/complicaciones , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/epidemiología , Hipertrofia Ventricular Izquierda/complicaciones , Función Ventricular Izquierda , Atrios Cardíacos , Fenotipo , Reino Unido/epidemiología
8.
JACC Cardiovasc Imaging ; 16(3): 408-425, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764891

RESUMEN

Excessive trabeculation, often referred to as "noncompacted" myocardium, has been described at all ages, from the fetus to the adult. Current evidence for myocardial development, however, does not support the formation of compact myocardium from noncompacted myocardium, nor the arrest of this process to result in so-called noncompaction. Excessive trabeculation is frequently observed by imaging studies in healthy individuals, as well as in association with pregnancy, athletic activity, and with cardiac diseases of inherited, acquired, developmental, or congenital origins. Adults with incidentally noted excessive trabeculation frequently require no further follow-up based on trabecular pattern alone. Patients with cardiomyopathy and excessive trabeculation are managed by cardiovascular symptoms rather than the trabecular pattern. To date, the prognostic role of excessive trabeculation in adults has not been shown to be independent of other myocardial disease. In neonates and children with excessive trabeculation and normal or abnormal function, clinical caution seems warranted because of the reported association with genetic and neuromuscular disorders. This report summarizes the evidence concerning the etiology, pathophysiology, and clinical relevance of excessive trabeculation. Gaps in current knowledge of the clinical relevance of excessive trabeculation are indicated, with priorities suggested for future research and improved diagnosis in adults and children.


Asunto(s)
Cardiomiopatías , Cardiopatías , No Compactación Aislada del Miocardio Ventricular , Adulto , Niño , Recién Nacido , Humanos , Ventrículos Cardíacos/diagnóstico por imagen , Valor Predictivo de las Pruebas , Miocardio , Cardiomiopatías/diagnóstico por imagen , Diagnóstico por Imagen , No Compactación Aislada del Miocardio Ventricular/diagnóstico por imagen , No Compactación Aislada del Miocardio Ventricular/terapia
9.
J Intern Med ; 293(1): 23-47, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36030368

RESUMEN

Dilated cardiomyopathy (DCM) is typically defined by left ventricular dilation and systolic dysfunction in the absence of a clear precipitant. Idiopathic disease is common; up to 50% of patients with DCM have no cause found despite imaging, genetic and biopsy assessments. Treatment remains focused on managing symptoms, reducing the risk of sudden cardiac death and ameliorating the structural and electrical complications of disease progression. In the absence of aetiology-specific treatments, the condition remains associated with a poor prognosis; mortality is approximately 40% at 10 years. The role of immune-mediated inflammatory injury in the development and progression of DCM was first proposed over 30 years ago. Despite the subsequent failures of three large clinical trials of immunosuppressive treatment (ATTACH, RENEWAL and the Myocarditis Treatment Trial), evidence for an abnormal adaptive immune response in DCM remains significant. In this review, we summarise and discuss available evidence supporting immune dysfunction in DCM, with a specific focus on cellular immunity. We also highlight current clinical and experimental treatments. We propose that the success of future immunosuppressive treatment trials in DCM will be dependent on the deep immunophenotyping of patients, to identify those with active inflammation and/or an abnormal immune response who are most likely to respond to therapy.


Asunto(s)
Cardiomiopatía Dilatada , Miocarditis , Humanos , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/terapia , Miocarditis/complicaciones , Miocarditis/diagnóstico , Corazón , Arritmias Cardíacas , Inflamación/complicaciones
10.
Circulation ; 146(25): 1930-1945, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36417924

RESUMEN

BACKGROUND: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS: In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS: We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS: Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.


Asunto(s)
Enfermedades Autoinmunes , Cardiomiopatías , Miocarditis , Humanos , Ratones , Animales , Autoinmunidad , Células T de Memoria , Miocarditis/etiología , Miocardio , Cardiomiopatías/complicaciones , Miosinas Cardíacas , Inflamación/complicaciones
12.
JACC Heart Fail ; 10(10): 714-727, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36175056

RESUMEN

BACKGROUND: The risk of adverse cardiovascular events in patients with acute myocarditis (AM) and desmosomal gene variants (DGV) remains unknown. OBJECTIVES: The purpose of this study was to ascertain the risk of death, ventricular arrhythmias, recurrent myocarditis, and heart failure (main endpoint) in patients with AM and pathogenic or likely pathogenetic DGV. METHODS: In a retrospective international study from 23 hospitals, 97 patients were included: 36 with AM and DGV (DGV[+]), 25 with AM and negative gene testing (DGV[-]), and 36 with AM without genetics testing. All patients had troponin elevation plus findings consistent with AM on histology or at cardiac magnetic resonance (CMR). In 86 patients, CMR changes in function and structure were re-assessed at follow-up. RESULTS: In the DGV(+) AM group (88.9% DSP variants), median age was 24 years, 91.7% presented with chest pain, and median left ventricular ejection fraction (LVEF) was 56% on CMR (P = NS vs the other 2 groups). Kaplan-Meier curves demonstrated a higher risk of the main endpoint in DGV(+) AM compared with DGV(-) and without genetics testing patients (62.3% vs 17.5% vs 5.3% at 5 years, respectively; P < 0.0001), driven by myocarditis recurrence and ventricular arrhythmias. At follow-up CMR, a higher number of late gadolinium enhanced segments was found in DGV(+) AM. CONCLUSIONS: Patients with AM and evidence of DGV have a higher incidence of adverse cardiovascular events compared with patients with AM without DGV. Further prospective studies are needed to ascertain if genetic testing might improve risk stratification of patients with AM who are considered at low risk.


Asunto(s)
Insuficiencia Cardíaca , Miocarditis , Gadolinio , Humanos , Miocarditis/genética , Estudios Retrospectivos , Volumen Sistólico , Troponina , Función Ventricular Izquierda , Adulto Joven
13.
Ther Adv Cardiovasc Dis ; 16: 17539447221108816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35916371

RESUMEN

INTRODUCTION: Hypertrophic cardiomyopathy (HCM) patients with left ventricular (LV) mid-cavity obstruction (LVMCO) often experience severe drug-refractory symptoms thought to be related to intraventricular obstruction. We tested whether ventricular pacing, guided by invasive haemodynamic assessment, reduced LVMCO and improved refractory symptoms. METHODS: Between December 2008 and December 2017, 16 HCM patients with severe refractory symptoms and LVMCO underwent device implantation with haemodynamic pacing study to assess the effect on invasively defined LVMCO gradients. The effect on the gradient of atrioventricular (AV) synchronous pacing from sites including right ventricular (RV) apex and middle cardiac vein (MCV) was retrospectively assessed. RESULTS: Invasive haemodynamic data were available in 14 of 16 patients. Mean pre-treatment intracavitary gradient was 77 ± 22 mmHg (in sinus rhythm) versus 21 ± 21 mmHg during pacing from optimal ventricular site (95% CI: -70.86 to -40.57, p < 0.0001). Optimal pacing site was distal MCV in 12/16 (86%), RV apex in 1/16 and via epicardial LV lead in 1/16. Pre-pacing Doppler-derived gradients were significantly higher than at follow-up (47 ± 15 versus 24 ± 16 mmHg, 95% CI: -37.19 to -13.73, p < 0.001). Median baseline NYHA class was 3, which had improved by ⩾1 NYHA class in 13 of 16 patients at 1-year post-procedure (p < 0.001). The mean follow-up duration was 4.6 ± 2.7 years with the following outcomes: 8/16 (50%) had continued symptomatic improvement, 4/16 had symptomatic decline and 4/16 died. Contributors to symptomatic decline included chronic atrial fibrillation (AF) (n = 5), phrenic nerve stimulation (n = 3) and ventricular ectopy (n = 1). CONCLUSION: In drug-refractory symptomatic LVMCO, distal ventricular pacing can reduce intracavitary obstruction and may provide long-term symptomatic relief in patients with limited treatment options. A haemodynamic pacing study is an effective strategy for identifying optimal pacing site and configuration.


Asunto(s)
Cardiomiopatía Hipertrófica , Marcapaso Artificial , Estimulación Cardíaca Artificial/efectos adversos , Estimulación Cardíaca Artificial/métodos , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/terapia , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Estudios Retrospectivos
14.
JACC Basic Transl Sci ; 7(3): 294-308, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35165665

RESUMEN

The mechanisms of coronavirus disease-2019 (COVID-19)-related myocardial injury comprise both direct viral invasion and indirect (hypercoagulability and immune-mediated) cellular injuries. Some patients with COVID-19 cardiac involvement have poor clinical outcomes, with preliminary data suggesting long-term structural and functional changes. These include persistent myocardial fibrosis, edema, and intraventricular thrombi with embolic events, while functionally, the left ventricle is enlarged, with a reduced ejection fraction and new-onset arrhythmias reported in a number of patients. Myocarditis post-COVID-19 vaccination is rare but more common among young male patients. Larger studies, including prospective data from biobanks, will be useful in expanding these early findings and determining their validity.

15.
Front Cardiovasc Med ; 8: 749668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746264

RESUMEN

Aims: To determine financial implications of implementing cardiac magnetic resonance imaging (CMR) in the diagnostic pathway of a population with unexplained acute myocardial injury and normal coronary angiography. Methods and Results: We performed a focused cost-benefit analysis using a hypothetical population of 2,000 patients with unexplained acute myocardial injury and normal coronary angiography divided into two groups to receive either standard or CMR guided management over a 10-year period. As healthcare practice and costs considerably vary geographically and over time, an algorithm with 15 key variables was developed to permit user-defined calculations of cost-benefit and other analyses. Using current UK costs, routine use of CMR increases healthcare spending by 14% per patient in the first year. After 7 years, CMR guided practice is cost neutral, reducing cost by 3% per patient 10 years following presentation. In addition, CMR -guided therapy results in 7 fewer myocardial infarctions and 14 fewer major bleeding events per 1,000 patients over a 10-year period. The three most sensitive variables were, in decreasing order, the cost of CMR, the cost of ticagrelor and the percentage of the population with MI requiring DAPT. Conclusion: Routine use of CMR in patients with unexplained acute myocardial injury and normal coronary angiography is associated with cost reductions in the medium to long term. The initial higher cost of CMR is offset over time and delivers a more personalized and higher quality of care.

16.
J Am Heart Assoc ; 10(12): e019610, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34056909

RESUMEN

Background Recognizing the etiology of sudden cardiac arrest (SCA) has an enormous impact on the management of victims and their immediate families. A significant proportion of SCA survivors with a structurally normal heart are not offered a diagnosis and there is no clear consensus on the type and duration of follow-up. We aimed to assess the utility of a multidisciplinary approach in optimizing diagnosis of cardiac arrest etiology during follow-up. Methods and Results We retrospectively assessed 327 consecutive SCA survivors (mean age 61.9±16.2 years, 80% men) who underwent secondary prevention implantable cardioverter defibrillators between May 2015 and November 2018. The initial diagnosis was recorded at the time of admission and follow-up diagnosis was deduced from subsequent clinic records, investigations, and outcomes of multidisciplinary team meetings. Structural heart disease accounted for 282 (86%) of SCAs. Forty-five (14%) patients had a structurally normal heart and underwent comprehensive testing and follow-up (mean duration 93±52 weeks). On initial evaluation, 14/45 (31%) of these received a diagnosis, rising to 29/45 (64%) with serial reviews during follow-up. Discussion in multidisciplinary team meetings and imaging reassessment accounted for 47% of new diagnoses. No additional diagnoses were made beyond 96 weeks. Nineteen (5.8%) fatalities occurred in the entire cohort, exclusively in patients with structural heart disease. Conclusions Systematic comprehensive testing combined with multidisciplinary expert team review of SCA survivors without structural heart disease improves the yield and time to diagnosis compared with previously published studies. This approach has positive implications in the management of SCA survivors and their families.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Técnicas de Diagnóstico Cardiovascular , Cardiopatías/diagnóstico , Grupo de Atención al Paciente , Adulto , Anciano , Muerte Súbita Cardíaca/prevención & control , Desfibriladores Implantables , Cardioversión Eléctrica/instrumentación , Femenino , Cardiopatías/complicaciones , Cardiopatías/terapia , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Sistema de Registros , Estudios Retrospectivos , Factores de Riesgo , Prevención Secundaria , Factores de Tiempo , Adulto Joven
17.
Europace ; 23(9): 1409-1417, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-33930121

RESUMEN

AIMS: Atrial fibrillation (AF) is common in hypertrophic cardiomyopathy (HCM). Data on the efficacy of catheter ablation of AF in HCM patients are sparse. METHODS AND RESULTS: Observational multicentre study in 137 HCM patients (mean age 55.0 ± 13.4, 29.1% female; 225 ablation procedures). We investigated (i) the efficacy of catheter ablation for AF beyond the initial 12 months; (ii) the available risk scores, stratification schemes and genotype as potential predictors of arrhythmia relapse, and (iii) the impact of cryoballoon vs. radiofrequency in procedural outcomes. Mean follow-up was 43.8 ± 37.0 months. Recurrences after the initial 12-month period post-ablation were frequent, and 24 months after the index procedure, nearly all patients with persistent AF had relapsed, and only 40% of those with paroxysmal AF remained free from arrhythmia recurrence. The APPLE score demonstrated a modest discriminative capacity for AF relapse post-ablation (c-statistic 0.63, 95% CI 0.52-0.75; P = 0.022), while the risk stratification schemes for sudden death did not. On multivariable analysis, left atrium diameter and LV apical aneurysm were independent predictors of recurrence. Fifty-eight patients were genotyped; arrhythmia-free survival was similar among subjects with different gene mutations. Rate of procedural complications was high (9.3%), although reducing over time. Outcome for cryoballoon and radiofrequency ablation was comparable. CONCLUSION: Very late AF relapses post-ablation is common in HCM patients, especially in those with persistent AF. Left atrium size, LV apical aneurysm, and the APPLE score might contribute to identify subjects at higher risk of arrhythmia recurrence. First-time cryoballoon is comparable with radiofrequency ablation.


Asunto(s)
Fibrilación Atrial , Cardiomiopatía Hipertrófica , Ablación por Catéter , Criocirugía , Adulto , Anciano , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/cirugía , Ablación por Catéter/efectos adversos , Criocirugía/efectos adversos , Femenino , Atrios Cardíacos , Humanos , Masculino , Persona de Mediana Edad , Recurrencia , Resultado del Tratamiento
18.
Int J Cardiol ; 330: 251-258, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535074

RESUMEN

BACKGROUND: Quantitative cardiovascular magnetic resonance T1-mapping is increasingly used for myocardial tissue characterization. However, the lack of standardization limits direct comparability between centers and wider roll-out for clinical use or trials. PURPOSE: To develop a quality assurance (QA) program assuring standardized T1 measurements for clinical use. METHODS: MR phantoms manufactured in 2013 were distributed, including ShMOLLI T1-mapping and reference T1 and T2 protocols. We first studied the T1 and T2 dependency on temperature and phantom aging using phantom datasets from a single site over 4 years. Based on this, we developed a multiparametric QA model, which was then applied to 78 scans from 28 other multi-national sites. RESULTS: T1 temperature sensitivity followed a second-order polynomial to baseline T1 values (R2 > 0.996). Some phantoms showed aging effects, where T1 drifted up to 49% over 40 months. The correlation model based on reference T1 and T2, developed on 1004 dedicated phantom scans, predicted ShMOLLI-T1 with high consistency (coefficient of variation 1.54%), and was robust to temperature variations and phantom aging. Using the 95% confidence interval of the correlation model residuals as the tolerance range, we analyzed 390 ShMOLLI T1-maps and confirmed accurate sequence deployment in 90%(70/78) of QA scans across 28 multiple centers, and categorized the rest with specific remedial actions. CONCLUSIONS: The proposed phantom QA for T1-mapping can assure correct method implementation and protocol adherence, and is robust to temperature variation and phantom aging. This QA program circumvents the need of frequent phantom replacements, and can be readily deployed in multicenter trials.


Asunto(s)
Cardiomiopatía Hipertrófica , Imagen por Resonancia Magnética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Sistema de Registros , Reproducibilidad de los Resultados
20.
Front Cardiovasc Med ; 7: 158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195445

RESUMEN

Aim: Left ventricular non-compaction (LVNC) is perceived as a rare high-risk cardiomyopathy characterized by excess left ventricular (LV) trabeculation. However, there is increasing evidence contesting the clinical significance of LV hyper-trabeculation and the existence of LVNC as a distinct cardiomyopathy. The aim of this study is to assess the association of LV trabeculation extent with cardiovascular morbidity and all-cause mortality in patients undergoing clinical cardiac magnetic resonance (CMR) scans across 57 European centers from the EuroCMR registry. Methods and Results: We studied 822 randomly selected cases from the EuroCMR registry. Image acquisition was according to international guidelines. We manually segmented images for LV chamber quantification and measurement of LV trabeculation (as per Petersen criteria). We report the association between LV trabeculation extent and important cardiovascular morbidities (stroke, atrial fibrillation, heart failure) and all-cause mortality prospectively recorded over 404 ± 82 days of follow-up. Maximal non-compaction to compaction ratio (NC/C) was mean (standard deviation) 1.81 ± 0.67, from these, 17% were above the threshold for hyper-trabeculation (NC/C > 2.3). LV trabeculation extent was not associated with increased risk of the defined outcomes (morbidities, mortality, LV CMR indices) in the whole cohort, or in sub-analyses of individuals without ischaemic heart disease, or those with NC/C > 2.3. Conclusion: Among 882 patients undergoing clinical CMR, excess LV trabeculation was not associated with a range of important cardiovascular morbidities or all-cause mortality over ~12 months of prospective follow-up. These findings suggest that LV hyper-trabeculation alone is not an indicator for worse cardiovascular prognosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...