Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(6): e99024, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24919197

RESUMEN

AIMS: To determine the mechanisms by which the α1A-adrenergic receptor (AR) regulates cardiac contractility. BACKGROUND: We reported previously that transgenic mice with cardiac-restricted α1A-AR overexpression (α1A-TG) exhibit enhanced contractility but not hypertrophy, despite evidence implicating this Gαq/11-coupled receptor in hypertrophy. METHODS: Contractility, calcium (Ca(2+)) kinetics and sensitivity, and contractile proteins were examined in cardiomyocytes, isolated hearts and skinned fibers from α1A-TG mice (170-fold overexpression) and their non-TG littermates (NTL) before and after α1A-AR agonist stimulation and blockade, angiotensin II (AngII), and Rho kinase (ROCK) inhibition. RESULTS: Hypercontractility without hypertrophy with α1A-AR overexpression is shown to result from increased intracellular Ca(2+) release in response to agonist, augmenting the systolic amplitude of the intracellular Ca(2+) concentration [Ca(2+)]i transient without changing resting [Ca(2+)]i. In the absence of agonist, however, α1A-AR overexpression reduced contractility despite unchanged [Ca(2+)]i. This hypocontractility is not due to heterologous desensitization: the contractile response to AngII, acting via its Gαq/11-coupled receptor, was unaltered. Rather, the hypocontractility is a pleiotropic signaling effect of the α1A-AR in the absence of agonist, inhibiting RhoA/ROCK activity, resulting in hypophosphorylation of both myosin phosphatase targeting subunit 1 (MYPT1) and cardiac myosin light chain 2 (cMLC2), reducing the Ca(2+) sensitivity of the contractile machinery: all these effects were rapidly reversed by selective α1A-AR blockade. Critically, ROCK inhibition in normal hearts of NTLs without α1A-AR overexpression caused hypophosphorylation of both MYPT1 and cMLC2, and rapidly reduced basal contractility. CONCLUSIONS: We report for the first time pleiotropic α1A-AR signaling and the physiological role of RhoA/ROCK signaling in maintaining contractility in the normal heart.


Asunto(s)
Contracción Miocárdica/fisiología , Receptores Adrenérgicos alfa 1/fisiología , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Agonistas alfa-Adrenérgicos/farmacología , Animales , Calcio/metabolismo , Ratones , Ratones Transgénicos , Fosforilación
2.
Cell Signal ; 25(3): 630-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23195829

RESUMEN

RhoGEF17, the product of the ARHGEF17 gene, is a Rho-specific guanine nucleotide exchange factor (GEF) with an unusual structure and so far unknown function. In order to get insights in its regulation, we studied a variety of signaling pathways for activation of recombinantly expressed RhoGEF17. We found that in the presence of stable cGMP analogs RhoGEF17 associates with and is phosphorylated by co-expressed cGKIα at distinct phosphorylation sites leading to a cooperative activation of RhoA, the Rho dependent kinases (ROCK) and serum response factor-induced gene transcription. Activation of protein kinase A did not induce phosphorylation of RhoGEF17 nor altered its activity. Furthermore, we obtained evidence for a ROCK-driven positive feedback mechanism involving serine/threonine protein phosphatases, which further enhanced cGMP/cGKIα-induced RhoGEF17 activation. By using mutants of RhoA which are phosphorylation resistant to cGK or mimic phosphorylation at serine 188, we could show that RhoGEF17 is able to activate RhoA independently of its phosphorylation state. Together with the ROCK-enforced activation of RhoGEF17 by cGMP/cGKIα, this might explain why expression of RhoGEF17 switches the inhibitory effect of cGMP/cGKIα on serum-induced RhoA activation into a stimulatory one. We conclude that RhoGEF17, depending on its expression profile and level, might drastically alter the effect of cGMP/cGK involving signaling pathways on RhoA-activated downstream effectors.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Línea Celular , GMP Cíclico/farmacología , Activación Enzimática/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Mutagénesis Sitio-Dirigida , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Factores de Intercambio de Guanina Nucleótido Rho , Factor de Respuesta Sérica/farmacología , Transducción de Señal , Transcripción Genética/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
3.
Cardiovasc Res ; 91(2): 310-9, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21546445

RESUMEN

AIMS: Sympathetic regulation of cardiac contractility is mediated in part by α(1)-adrenergic receptors (ARs), and the α(1A)-subtype has been implicated in the pathogenesis of cardiac hypertrophy. However, little is known about α(1A)-AR signalling pathways in ventricular myocardium. The aim of this study was to determine the signalling pathway that mediates α(1A)-AR-coupled cardiac contractility. METHODS AND RESULTS: Using a transgenic model of enhanced cardiac α(1A)-AR expression and signalling (α(1A)-H mice), we identified a receptor-coupled signalling pathway that enhances Ca(2+) entry and increases contractility. This pathway involves α(1A)-AR-activated translocation of Snapin and the transient receptor potential canonical 6 (TRPC6) channel to the plasma membrane. In ventricular cardiomyocytes from α(1A)-H and their non-transgenic littermates (or WTs), stimulation with α(1A)-AR-specific agonists resulted in increased [Ca(2+)](i), which was dose-related and proportional to the level of α(1A)-AR expression. Blockade of TRPC6 inhibited the α(1A)-AR-mediated increase in [Ca(2+)](i) and contractility. External Ca(2+) entry, underlying the [Ca(2+)](i) increase, was not due to store-operated Ca(2+) entry but to a receptor-operated mechanism of Ca(2+) entry resulting from α(1A)-AR activation. CONCLUSION: These findings indicate that Ca(2+) entry via the α(1A)-AR-Snapin-TRPC6-pathway plays an important role in physiological regulation of cardiac contractility and may be an important target for augmenting cardiac performance.


Asunto(s)
Señalización del Calcio , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Análisis de Varianza , Animales , Células COS , Señalización del Calcio/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Muerte Súbita Cardíaca/prevención & control , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células HEK293 , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Cardiopatías/prevención & control , Humanos , Masculino , Ratones , Ratones Transgénicos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Fosfolipasa C beta/metabolismo , Transporte de Proteínas , Interferencia de ARN , Ratas , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 1/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6 , Factores de Tiempo , Transfección , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Biochem Biophys Res Commun ; 335(4): 1280-6, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16112081

RESUMEN

RhoGTPases, which are activated by specific guanine nucleotide exchange factors (GEFs), play pivotal roles in several cellular functions. We identified a new RhoGEF (GrinchGEF) containing the typical Dbl homology domain, a putative WD40-like domain, and two predicted transmembrane helices. In contrast to most other RhoGEFs, it exhibits no sequence similarities to known pleckstrin homology domains. GrinchGEF mRNA was highly abundant in skeletal muscle and pancreas. Despite the predicted transmembrane domains, subcellular localization studies revealed a cytosolic distribution. In vitro, GrinchGEF induced the GDP/GTP exchange at RhoA, but not at Rac1 or Cdc42. In intact cells, GrinchGEF induced specifically Rho activation and enhanced RhoA-C-specific downstream effects.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Especificidad de Órganos , Factores de Intercambio de Guanina Nucleótido Rho , Homología de Secuencia de Aminoácido , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...