Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 14: 728498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497491

RESUMEN

Different families of auxiliary subunits regulate the function and trafficking of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the central nervous system. While a facilitatory role of auxiliary subunits in ER export and forward trafficking of newly synthesized AMPA receptors is firmly established, it is unclear whether auxiliary subunits also control endosomal receptor turnover in dendrites. Here, we manipulated the composition of AMPA receptor complexes in cultured hippocampal neurons by overexpression of two auxiliary subunits, transmembrane AMPAR regulatory protein (TARP) γ-8 or cysteine knot AMPAR-modulating protein (CKAMP) 44a, and monitored dendritic receptor cycling in live-cell imaging experiments. Receptor surface delivery was assayed using a modified AMPA receptor subunit carrying the pH-dependent fluorophore superecliptic pHluorin (SEP-GluA1), which regains its fluorescence during receptor exocytosis, when transiting from the acidic lumen of transport organelles to the neutral extracellular medium. Strikingly, we observed a dramatic reduction in the spontaneous fusion rate of AMPA receptor-containing organelles in neurons overexpressing either type of auxiliary subunit. An analysis of intracellular receptor distribution also revealed a decreased receptor pool in dendritic recycling endosomes, suggesting that incorporation of TARPγ-8 or CKAMP44a in receptor complexes generally diminishes cycling through the endosomal compartment. To directly analyze dendritic receptor turnover, we also generated a new reporter by N-terminal fusion of a self-labeling HaloTag to an AMPA receptor subunit (HaloTag-GluA1), which allows for selective, irreversible staining of surface receptors. Pulse chase-experiments with HaloTag-GluA1 indeed demonstrated that overexpression of TARPγ-8 or CKAMP44a reduces the constitutive internalization rate of surface receptors at extrasynaptic but not synaptic sites. Thus, our data point to a yet unrecognized regulatory function of TARPγ-8 and CKAMP44a, by which these structurally unrelated auxiliary subunits delay local recycling and increase surface lifetime of extrasynaptic AMPA receptors.

2.
Methods Mol Biol ; 2233: 233-251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222139

RESUMEN

Fusion of vesicles with the plasma membrane and liberation of their contents is a multistep process involving several proteins. Correctly assigning the role of specific proteins and reactions in this cascade requires a measurement method with high temporal resolution. Patch-clamp recordings of cell membrane capacitance in combination with calcium measurements, calcium uncaging, and carbon-fiber amperometry allow for the accurate determination of vesicle pool sizes, their fusion kinetics, and their secreted oxidizable content. Here, we will describe this method in a model system for neurosecretion, the adrenal chromaffin cells, which secrete adrenaline.


Asunto(s)
Calcio/metabolismo , Células Cromafines/metabolismo , Exocitosis/genética , Técnicas de Placa-Clamp/métodos , Glándulas Suprarrenales/metabolismo , Animales , Señalización del Calcio/genética , Capacidad Eléctrica , Cinética , Potenciales de la Membrana/genética , Ratones
3.
Elife ; 92020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32391794

RESUMEN

Vesicle fusion is mediated by assembly of SNARE proteins between opposing membranes. While previous work suggested an active role of SNARE transmembrane domains (TMDs) in promoting membrane merger (Dhara et al., 2016), the underlying mechanism remained elusive. Here, we show that naturally-occurring v-SNARE TMD variants differentially regulate fusion pore dynamics in mouse chromaffin cells, indicating TMD flexibility as a mechanistic determinant that facilitates transmitter release from differentially-sized vesicles. Membrane curvature-promoting phospholipids like lysophosphatidylcholine or oleic acid profoundly alter pore expansion and fully rescue the decelerated fusion kinetics of TMD-rigidifying VAMP2 mutants. Thus, v-SNARE TMDs and phospholipids cooperate in supporting membrane curvature at the fusion pore neck. Oppositely, slowing of pore kinetics by the SNARE-regulator complexin-2 withstands the curvature-driven speeding of fusion, indicating that pore evolution is tightly coupled to progressive SNARE complex formation. Collectively, TMD-mediated support of membrane curvature and SNARE force-generated membrane bending promote fusion pore formation and expansion.


Asunto(s)
Exocitosis , Fusión de Membrana , Complejos Multiproteicos/fisiología , Neurotransmisores/fisiología , Fosfolípidos/metabolismo , Proteínas SNARE/fisiología , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Animales , Calcio/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafines , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mutantes/fisiología , Unión Proteica , Dominios Proteicos , Vesículas Secretoras/fisiología
4.
Elife ; 82019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30883328

RESUMEN

SNAP-25 is an essential component of SNARE complexes driving fast Ca2+-dependent exocytosis. Yet, the functional implications of the tandem-like structure of SNAP-25 are unclear. Here, we have investigated the mechanistic role of the acylated "linker" domain that concatenates the two SNARE motifs within SNAP-25. Refuting older concepts of an inert connector, our detailed structure-function analysis in murine chromaffin cells demonstrates that linker motifs play a crucial role in vesicle priming, triggering, and fusion pore expansion. Mechanistically, we identify two synergistic functions of the SNAP-25 linker: First, linker motifs support t-SNARE interactions and accelerate ternary complex assembly. Second, the acylated N-terminal linker segment engages in local lipid interactions that facilitate fusion triggering and pore evolution, putatively establishing a favorable membrane configuration by shielding phospholipid headgroups and affecting curvature. Hence, the linker is a functional part of the fusion complex that promotes secretion by SNARE interactions as well as concerted lipid interplay.


Asunto(s)
Células Cromafines/metabolismo , Fosfolípidos/metabolismo , Vesículas Secretoras/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Masculino , Ratones , Unión Proteica , Multimerización de Proteína , Ratas , Proteínas SNARE/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética
5.
Front Cell Neurosci ; 12: 304, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254567

RESUMEN

The two paralogs of the calcium-dependent activator protein for secretion (CAPS) are priming factors for synaptic vesicles (SVs) and neuropeptide containing large dense-core vesicles (LDCVs). Yet, it is unclear whether CAPS1 and CAPS2 regulate exocytosis of these two vesicle types differentially in dorsal root ganglion (DRG) neurons, wherein synaptic transmission and neuropeptide release are of equal importance. These sensory neurons transfer information from the periphery to the spinal cord (SC), releasing glutamate as the primary neurotransmitter, with co-transmission via neuropeptides in a subset of so called peptidergic neurons. Neuropeptides are key components of the information-processing machinery of pain perception and neuropathic pain generation. Here, we compared the ability of CAPS1 and CAPS2 to support priming of both vesicle types in single and double knock-out mouse (DRG) neurons using a variety of high-resolution live cell imaging methods. While CAPS1 was localized to synapses of all DRG neurons and promoted synaptic transmission, CAPS2 was found exclusively in peptidergic neurons and mediated LDCV exocytosis. Intriguingly, ectopic expression of CAPS2 empowered non-peptidergic neurons to drive LDCV fusion, thereby identifying CAPS2 as an essential molecular determinant for peptidergic signaling. Our results reveal that these distinct functions of both CAPS paralogs are based on their differential subcellular localization in DRG neurons. Our data suggest a major role for CAPS2 in neuropathic pain via control of neuropeptide release.

6.
Elife ; 72018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30044227

RESUMEN

ComplexinII (CpxII) inhibits non-synchronized vesicle fusion, but the underlying mechanisms have remained unclear. Here, we provide evidence that the far C-terminal domain (CTD) of CpxII interferes with SNARE assembly, thereby arresting tonic exocytosis. Acute infusion of a CTD-derived peptide into mouse chromaffin cells enhances synchronous release by diminishing premature vesicle fusion like full-length CpxII, indicating a direct, inhibitory function of the CTD that sets the magnitude of the primed vesicle pool. We describe a high degree of structural similarity between the CpxII CTD and the SNAP25-SN1 domain (C-terminal half) and show that the CTD peptide lowers the rate of SDS-resistant SNARE complex formation in vitro. Moreover, corresponding CpxII:SNAP25 chimeras do restore complexin's function and even 'superclamp' tonic secretion. Collectively, these results support a so far unrecognized clamping mechanism wherein the CpxII C-terminus hinders spontaneous SNARE complex assembly, enabling the build-up of a release-ready pool of vesicles for synchronized Ca2+-triggered exocytosis.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Exocitosis/genética , Proteínas del Tejido Nervioso/química , Vesículas Sinápticas/química , Proteína 25 Asociada a Sinaptosomas/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Calcio/química , Membrana Celular/química , Membrana Celular/genética , Fusión de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Unión Proteica , Dominios Proteicos/genética , Proteínas SNARE/química , Proteínas SNARE/genética , Vesículas Sinápticas/genética , Proteína 25 Asociada a Sinaptosomas/genética
7.
Pflugers Arch ; 470(1): 169-180, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887593

RESUMEN

Vesicle fusion is elementary for intracellular trafficking and release of signal molecules, thus providing the basis for diverse forms of intercellular communication like hormonal regulation or synaptic transmission. A detailed characterization of the mechanisms underlying exocytosis is key to understand how the nervous system integrates information and generates appropriate responses to stimuli. The machinery for vesicular release employs common molecular players in different model systems including neuronal and neuroendocrine cells, in particular members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein family, Sec1/Munc18-like proteins, and other accessory factors. To achieve temporal precision and speed, excitable cells utilize specialized regulatory proteins like synaptotagmin and complexin, whose interplay putatively synchronizes vesicle fusion and enhances stimulus-secretion coupling. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. Specifically, we will focus on the role of vesicle associated membrane proteins, also referred to as vesicular SNAREs, in fusion and rapid cargo discharge. We will further discuss the functions of SNARE regulators during exocytosis and focus on chromaffin cell as a model system of choice that allows for detailed structure-function analyses and direct measurements of vesicle fusion under precise control of intracellular [Ca]i.


Asunto(s)
Células Cromafines/metabolismo , Proteínas SNARE/metabolismo , Animales , Exocitosis , Humanos , Fusión de Membrana
8.
Elife ; 52016 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-27343350

RESUMEN

Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.


Asunto(s)
Exocitosis , Fusión de Membrana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Vesículas Secretoras/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Células Cultivadas , Análisis Mutacional de ADN , Ratones , Modelos Biológicos , Proteínas Mutantes/química , Conformación Proteica , Proteína 2 de Membrana Asociada a Vesículas/química
9.
Cell Mol Life Sci ; 72(22): 4221-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26245303

RESUMEN

Despite intensive research, it is still unclear how an immediate and profound acceleration of exocytosis is triggered by appropriate Ca(2+)-stimuli in presynaptic terminals. This is due to the fact that the molecular mechanisms of "docking" and "priming" reactions, which set up secretory vesicles to fuse at millisecond time scale, are extremely hard to study. Yet, driven by a fruitful combination of in vitro and in vivo analyses, our mechanistic understanding of Ca(2+)-triggered vesicle fusion has certainly advanced in the past few years. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. In particular, we will focus on the role of the small regulatory factor complexin whose function in Ca(2+)-dependent exocytosis has been controversially discussed for more than a decade. Special emphasis will also be laid on the functional relationship of complexin and synaptotagmin, as both proteins possibly act as allies and/or antagonists to govern SNARE-mediated exocytosis.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Calcio/metabolismo , Exocitosis , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/metabolismo , Humanos , Fusión de Membrana , Modelos Biológicos , Unión Proteica , Proteínas SNARE/metabolismo , Sinaptotagminas/metabolismo
10.
PLoS One ; 9(11): e114033, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25422940

RESUMEN

Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive stimulation, and can even play a dominant role in some synapses. Here, we show that substitution of SNAP-23 for SNAP-25 in mouse autaptic glutamatergic hippocampal neurons results in asynchronous release and a higher frequency of spontaneous release events (mEPSCs). Use of neurons from double-knock-out (SNAP-25, synaptotagmin-7) mice in combination with viral transduction showed that SNAP-23-driven release is triggered by endogenous synaptotagmin-7. In the absence of synaptotagmin-7 release became even more asynchronous, and the spontaneous release rate increased even more, indicating that synaptotagmin-7 acts to synchronize release and suppress spontaneous release. However, compared to synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium sensor. In the presence of SNAP-25, consequences of the elimination of synaptotagmin-7 were small or absent, indicating that the protein pairs SNAP-25/synaptotagmin-1 and SNAP-23/synaptotagmin-7 might act as mutually exclusive calcium sensors. Expression of fusion proteins between pHluorin (pH-sensitive GFP) and synaptotagmin-1 or -7 showed that vesicles that fuse using the SNAP-23/synaptotagmin-7 combination contained synaptotagmin-1, while synaptotagmin-7 barely displayed activity-dependent trafficking between vesicle and plasma membrane, implying that it acts as a plasma membrane calcium sensor. Overall, these findings support the idea of alternative syt∶SNARE combinations driving release with different kinetics and fidelity.


Asunto(s)
Neuronas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Transmisión Sináptica/fisiología , Sinaptotagminas/fisiología , Animales , Línea Celular , Ratones , Ratones Noqueados , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética
11.
J Cell Biol ; 204(7): 1123-40, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24687280

RESUMEN

ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca(2+)-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca(2+) concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca(2+)-triggered exocytosis by increasing the Ca(2+) affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca(2+)-triggered release apparatus.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Exocitosis , Proteínas del Tejido Nervioso/fisiología , Animales , Señalización del Calcio , Células Cultivadas , Células Cromafines/metabolismo , Gránulos Cromafines/metabolismo , Cinética , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Sinaptotagminas/metabolismo , Proteínas de Transporte Vesicular
12.
J Neurosci ; 33(36): 14417-30, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005294

RESUMEN

SNARE complex assembly constitutes a key step in exocytosis that is rendered Ca(2+)-dependent by interactions with synaptotagmin-1. Two putative sites for synaptotagmin binding have recently been identified in SNAP-25 using biochemical methods: one located around the center and another at the C-terminal end of the SNARE bundle. However, it is still unclear whether and how synaptotagmin-1 × SNARE interactions at these sites are involved in regulating fast neurotransmitter release. Here, we have used electrophysiological techniques with high time-resolution to directly investigate the mechanistic ramifications of proposed SNAP-25 × synaptotagmin-1 interaction in mouse chromaffin cells. We demonstrate that the postulated central binding domain surrounding layer zero covers both SNARE motifs of SNAP-25 and is essential for vesicle docking, priming, and fast fusion-triggering. Mutation of this site caused no further functional alterations in synaptotagmin-1-deficient cells, indicating that the central acidic patch indeed constitutes a mechanistically relevant synaptotagmin-1 interaction site. Moreover, our data show that the C-terminal binding interface only plays a subsidiary role in triggering but is required for the full size of the readily releasable pool. Intriguingly, we also found that mutation of synaptotagmin-1 interaction sites led to more pronounced phenotypes in the context of the adult neuronal isoform SNAP-25B than in the embryonic isoform SNAP-25A. Further experiments demonstrated that stronger synaptotagmin-1 × SNAP-25B interactions allow for the larger primed vesicle pool supported by SNAP-25 isoform B. Thus, synaptotagmin-1 × SNARE interactions are not only required for multiple mechanistic steps en route to fusion but also underlie the developmental control of the releasable vesicle pool.


Asunto(s)
Transporte de Proteínas , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagmina I/metabolismo , Vesículas Transportadoras/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células Cultivadas , Células Cromafines/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/genética , Sinaptotagmina I/química , Sinaptotagmina I/genética
13.
J Neurosci ; 32(45): 15983-97, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23136435

RESUMEN

Trans-soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes formed between the SNARE motifs of synaptobrevin II, SNAP-25, and syntaxin play an essential role in Ca(2+)-regulated exocytosis. Apart from the well studied interactions of the SNARE domains, little is known about the functional relevance of other evolutionarily conserved structures in the SNARE proteins. Here, we show that substitution of two highly conserved tryptophan residues within the juxtamembrane domain (JMD) of the vesicular SNARE Synaptobrevin II (SybII) profoundly impairs priming of granules in mouse chromaffin cells without altering catecholamine release from single vesicles. Using molecular dynamic simulations of membrane-embedded SybII, we show that Trp residues of the JMD influence the electrostatic surface potential by controlling the position of neighboring lysine and arginine residues at the membrane-water interface. Our observations indicate a decisive role of the tryptophan moiety of SybII in keeping the vesicles in the release-ready state and support a model wherein tryptophan-mediated protein-lipid interactions assist in bridging the apposing membranes before fusion.


Asunto(s)
Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Triptófano/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Células Cultivadas , Exocitosis/fisiología , Ratones , Ratones Noqueados , Proteínas SNARE/genética , Vesículas Secretoras/genética , Triptófano/genética , Proteína 2 de Membrana Asociada a Vesículas/genética
14.
J Mol Neurosci ; 48(2): 387-94, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22427188

RESUMEN

Although it has been known for almost two decades that the ternary complex of N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) constitutes the functional unit driving membrane fusion, our knowledge about the dynamical arrangement and organization of SNARE proteins and their complexes before and during vesicle exocytosis is still limited. Here, we review recent progress in this expanding field with emphasis on the question of fusion complex stoichiometry, i.e., how many SNARE proteins and complexes are needed for the fusion of a vesicle with the plasma membrane.


Asunto(s)
Células Cromafines/fisiología , Exocitosis/fisiología , Fusión de Membrana/fisiología , Sistemas Neurosecretores/fisiología , Proteínas SNARE/fisiología , Animales , Humanos , Sistemas Neurosecretores/citología
15.
Science ; 330(6003): 502-5, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20847232

RESUMEN

Exocytosis requires formation of SNARE [soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor] complexes between vesicle and target membranes. Recent assessments in reduced model systems have produced divergent estimates of the number of SNARE complexes needed for fusion. Here, we used a titration approach to answer this question in intact, cultured chromaffin cells. Simultaneous expression of wild-type SNAP-25 and a mutant unable to support exocytosis progressively altered fusion kinetics and fusion-pore opening, indicating that both proteins assemble into heteromeric fusion complexes. Expressing different wild-type:mutant ratios revealed a third-power relation for fast (synchronous) fusion and a near-linear relation for overall release. Thus, fast fusion typically observed in synapses and neurosecretory cells requires at least three functional SNARE complexes, whereas slower release might occur with fewer complexes. Heterogeneity in SNARE-complex number may explain heterogeneity in vesicular release probability.


Asunto(s)
Exocitosis/fisiología , Fusión de Membrana/fisiología , Proteína 25 Asociada a Sinaptosomas/fisiología , Animales , Membrana Celular/fisiología , Células Cromafines/fisiología , Vesículas Citoplasmáticas/fisiología , Proteínas Fluorescentes Verdes/genética , Ratones , Mutación , Proteínas SNARE/fisiología , Proteína 25 Asociada a Sinaptosomas/genética
16.
Traffic ; 11(11): 1415-28, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20716109

RESUMEN

The four Rab3 paralogs A-D are involved in exocytosis, but their mechanisms of action are hard to study due to functional redundancy. Here, we used a quadruple Rab3 knockout (KO) (rab3a, rab3b, rab3c, rab3d null, here denoted as ABCD(-/-) ) mouse line to investigate Rab3 function in embryonic mouse adrenal chromaffin cells by electron microscopy and electrophysiological measurements. We show that in cells from ABCD(-/-) animals large dense-core vesicles (LDCVs) are less abundant, while the number of morphologically docked granules is normal. By capacitance measurements, we show that deletion of Rab3s reduces the size of the releasable vesicle pools but does not alter their fusion kinetics, consistent with an altered function in vesicle priming. The sustained release component has a sigmoid shape in ABCD(-/-) cells when normalized to the releasable pool size, indicating that vesicle priming follows at a higher rate after an initial delay. Rescue experiments showed that short-term (4-6 h) overexpression of Rab3A or Rab3C suffices to rescue vesicle priming and secretion, but it does not restore the number of secretory vesicles. We conclude that Rab3 proteins play two distinct stimulating roles for LDCV fusion in embryonic chromaffin cells, by facilitating vesicle biogenesis and stabilizing the primed vesicle state.


Asunto(s)
Células Cromafines , Vesículas Transportadoras/fisiología , Proteínas de Unión al GTP rab3/metabolismo , Animales , Western Blotting , Investigaciones con Embriones , Ratones , Ratones Noqueados , Biogénesis de Organelos , Isoformas de Proteínas
17.
Mol Biol Cell ; 19(9): 3769-81, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18579690

RESUMEN

The assembly of four soluble N-ethylmaleimide-sensitive factor attachment protein receptor domains into a complex is essential for membrane fusion. In most cases, the four SNARE-domains are encoded by separate membrane-targeted proteins. However, in the exocytotic pathway, two SNARE-domains are present in one protein, connected by a flexible linker. The significance of this arrangement is unknown. We characterized the role of the linker in SNAP-25, a neuronal SNARE, by using overexpression techniques in synaptosomal-associated protein of 25 kDa (SNAP-25) null mouse chromaffin cells and fast electrophysiological techniques. We confirm that the palmitoylated linker-cysteines are important for membrane association. A SNAP-25 mutant without cysteines supported exocytosis, but the fusion rate was slowed down and the fusion pore duration prolonged. Using chimeric proteins between SNAP-25 and its ubiquitous homologue SNAP-23, we show that the cysteine-containing part of the linkers is interchangeable. However, a stretch of 10 hydrophobic and charged amino acids in the C-terminal half of the SNAP-25 linker is required for fast exocytosis and in its absence the calcium dependence of exocytosis is shifted toward higher concentrations. The SNAP-25 linker therefore might have evolved as an adaptation toward calcium triggering and a high rate of execution of the fusion process, those features that distinguish exocytosis from other membrane fusion pathways.


Asunto(s)
Exocitosis , Regulación de la Expresión Génica , Proteína 25 Asociada a Sinaptosomas/fisiología , Secuencia de Aminoácidos , Animales , Bovinos , Células Cromafines/metabolismo , Electrofisiología/métodos , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Qb-SNARE/fisiología , Proteínas Qc-SNARE/fisiología , Proteínas Recombinantes de Fusión/química , Homología de Secuencia de Aminoácido , Proteína 25 Asociada a Sinaptosomas/química , Sinaptosomas/metabolismo
18.
Neuron ; 51(6): 741-54, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16982420

RESUMEN

Synaptogenesis, the generation and maturation of functional synapses between nerve cells, is an essential step in the development of neuronal networks in the brain. It is thought to be triggered by members of the neuroligin family of postsynaptic cell adhesion proteins, which may form transsynaptic contacts with presynaptic alpha- and beta-neurexins and have been implicated in the etiology of autism. We show that deletion mutant mice lacking neuroligin expression die shortly after birth due to respiratory failure. This respiratory failure is a consequence of reduced GABAergic/glycinergic and glutamatergic synaptic transmission and network activity in brainstem centers that control respiration. However, the density of synaptic contacts is not altered in neuroligin-deficient brains and cultured neurons. Our data show that neuroligins are required for proper synapse maturation and brain function, but not for the initial formation of synaptic contacts.


Asunto(s)
Encéfalo/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/fisiología , Proteínas Adaptadoras del Transporte Vesicular , Animales , Animales Recién Nacidos , Western Blotting , Encéfalo/citología , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiología , Moléculas de Adhesión Celular Neuronal , Células Cultivadas , Expresión Génica/genética , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/ultraestructura , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/fisiopatología , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Sinapsis/genética , Sinapsis/ultraestructura
19.
J Neurosci ; 26(9): 2369-79, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16510714

RESUMEN

Rolling blackout (RBO) is a putative transmembrane lipase required for phospholipase C-dependent phosphatidylinositol 4,5-bisphosphate-diacylglycerol signaling in Drosophila neurons. Conditional temperature-sensitive (TS) rbo mutants display complete, reversible paralysis within minutes, demonstrating that RBO is acutely required for movement. RBO protein is localized predominantly in presynaptic boutons at neuromuscular junction (NMJ) synapses and throughout central synaptic neuropil, and rbo TS mutants display a complete, reversible block of both central and peripheral synaptic transmission within minutes. This phenotype appears limited to adults, because larval NMJs do not manifest the acute blockade. Electron microscopy of adult rbo TS mutant boutons reveals an increase in total synaptic vesicle (SV) content, with a concomitant shrinkage of presynaptic bouton size and an accumulation of docked SVs at presynaptic active zones within minutes. Genetic tests reveal a synergistic interaction between rbo and syntaxin1A TS mutants, suggesting that RBO is required in the mechanism of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated SV exocytosis, or in a parallel pathway necessary for SV fusion. The rbo TS mutation does not detectably alter SNARE complex assembly, suggesting a downstream requirement in SV fusion. We conclude that RBO plays an essential role in neurotransmitter release, downstream of SV docking, likely mediating SV fusion.


Asunto(s)
Hidrolasas de Éster Carboxílico/fisiología , Proteínas de Drosophila/fisiología , Exocitosis/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Sensación Térmica/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal , Western Blotting/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Hidrolasas de Éster Carboxílico/genética , Proteínas Portadoras , Diagnóstico por Imagen/métodos , Relación Dosis-Respuesta en la Radiación , Proteínas de Drosophila/genética , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/efectos de la radiación , Femenino , Peroxidasa de Rábano Silvestre/metabolismo , Inmunohistoquímica/métodos , Larva , Masculino , Microscopía Electrónica de Transmisión/métodos , Modelos Neurológicos , Movimiento/fisiología , Mutación/fisiología , Fibras Nerviosas/fisiología , Fibras Nerviosas/efectos de la radiación , Unión Neuromuscular/genética , Unión Neuromuscular/fisiología , Unión Neuromuscular/efectos de la radiación , Unión Neuromuscular/ultraestructura , Tiempo de Reacción/fisiología , Tiempo de Reacción/efectos de la radiación , Proteínas SNARE/metabolismo , Transmisión Sináptica/genética , Vesículas Sinápticas/ultraestructura , Sensación Térmica/genética , Factores de Tiempo
20.
J Neurosci ; 24(41): 9105-16, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15483129

RESUMEN

In vertebrates, several groups of metabotropic glutamate receptors (mGluRs) are known to modulate synaptic properties. In contrast, the Drosophila genome encodes a single functional mGluR (DmGluRA), an ortholog of vertebrate group II mGluRs, greatly expediting the functional characterization of mGluR-mediated signaling in the nervous system. We show here that DmGluRA is expressed at the glutamatergic neuromuscular junction (NMJ), localized in periactive zones of presynaptic boutons but excluded from active sites. Null DmGluRA mutants are completely viable, and all of the basal NMJ synaptic transmission properties are normal. In contrast, DmGluRA mutants display approximately a threefold increase in synaptic facilitation during short stimulus trains. Prolonged stimulus trains result in very strongly increased ( approximately 10-fold) augmentation, including the appearance of asynchronous, bursting excitatory currents never observed in wild type. Both defects are rescued by expression of DmGluRA only in the neurons, indicating a specific presynaptic requirement. These phenotypes are reminiscent of hyperexcitable mutants, suggesting a role of DmGluRA signaling in the regulation of presynaptic excitability properties. The mutant phenotypes could not be replicated by acute application of mGluR antagonists, suggesting that DmGluRA regulates the development of presynaptic properties rather than directly controlling short-term modulation. DmGluRA mutants also display mild defects in NMJ architecture: a decreased number of synaptic boutons accompanied by an increase in mean bouton size. These morphological changes bidirectionally correlate with DmGluRA levels in the presynaptic terminal. These data reveal the following two roles for DmGluRA in presynaptic mechanisms: (1) modulation of presynaptic excitability properties important for the control of activity-dependent neurotransmitter release and (2) modulation of synaptic architecture.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Estimulación Eléctrica , Retroalimentación Fisiológica/fisiología , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Ácido Glutámico/metabolismo , Larva , Mutación , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Receptores de Glutamato Metabotrópico/genética , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...