Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38203953

RESUMEN

Liquid marbles are widely known for their potential biomedical applications, especially due to their versatility and ease of preparation. In the present work, we prepared liquid marbles with various cores composed of water, agar-based hydrogels, magnetic fluids, or non-aqueous substances. As a coating material, we used biocompatible particles of plant origin, such as turmeric grains and Lycopodium pollen. Additionally, we provided marbles with magnetic properties by incorporating either magnetosomes or iron oxide nanoparticles as a powder or by injecting another magnetic fluid. Structures obtained in this way were stable and susceptible to manipulation by an external magnetic field. The properties of the magnetic components of our marbles were verified using electron paramagnetic resonance (EPR) spectroscopy and vibrating sample magnetometry (VSM). Our approach to encapsulation of active substances such as antibiotics within a protective hydrogel core opens up new perspectives for the delivery of hydrophobic payloads to the inherently hydrophilic biological environment. Additionally, hydrogel marbles enriched with magnetic materials showed promise as biocompatible heating agents under alternating magnetic fields. A significant innovation of our research was also the fabrication of composite structures in which the gel-like core was surrounded without mixing by a magnetic fluid covered on the outside by the particle shell. Our liquid marbles, especially those with a hydrogel core and magnetic content, due to the ease of preparation and favorable properties, have great potential for biomedical use. The fact that we were able to simultaneously produce, functionalize (by filling with predefined cargo), and manipulate (by means of an external magnetic field) several marbles also seems to be important from an application point of view.

2.
Molecules ; 27(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080372

RESUMEN

A number of materials are studied in the field of magnetic hyperthermia. In general, the most promising ones appear to be iron oxide particle nanosystems. This is also indicated in some clinical trial studies where iron-based oxides were used. On the other hand, the type of material itself provides a number of variations on how to tune hyperthermia indicators. In this paper, magnetite nanoparticles in various forms were analyzed. The nanoparticles differed in the core size as well as in the form of their arrangement. The arrangement was determined by the nature of the surfactant. The individual particles were covered chemically by dextran; in the case of chain-like particles, they were encapsulated naturally in a lipid bilayer. It was shown that in the case of chain-like nanoparticles, except for relaxation, a contribution from magnetic hysteresis to the heating process also appears. The influence of the chosen methodology of magnetic field generation was also analyzed. In addition, the influence of the chosen methodology of magnetic field generation was analyzed. The application of a rotating magnetic field was shown to be more efficient in generating heat than the application of an alternating magnetic field. However, the degree of efficiency depended on the arrangement of the magnetite nanoparticles. The difference in the efficiency of the rotating magnetic field versus the alternating magnetic field was much more pronounced for individual nanoparticles (in the form of a magnetic fluid) than for systems containing chain nanoparticles (magnetosomes and a mix of magnetic fluid with magnetosomes in a ratio 1:1).


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Magnetosomas , Línea Celular Tumoral , Hipertermia Inducida/métodos , Campos Magnéticos
3.
Nanomaterials (Basel) ; 11(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34685084

RESUMEN

The effect of the liquid crystalline host on structural changes in magnetosomes based on ferronematics is studied using the surface acoustic wave (SAW) technique supported by some capacitance and light transmission measurements. The measurement of the attenuation response of SAW propagating along the interface between LC and the piezoelectric substrate is used to study processes of structural changes under magnetic field. The magnetosome nanoparticles of the same volume concentration were added to three different nematic LCs, 5CB, 6CB, and E7. Unlike to undoped LCs, the different responses of SAW attenuation under the influence of magnetic and electric fields in LCs doped with magnetosomes were observed due to characteristic structural changes. The decrease of the threshold field for doped LCs as compared with pure LCs and slight effects on structural changes were registered. The threshold magnetic fields of LCs and composites were determined from capacitance measurements, and the slight shift to lower values was registered for doped LCs. The shift of nematic-isotropic transition was registered from dependencies of SAW attenuation on temperature. The acoustic anisotropy measurement approved the previous supposition about the role of bulk viscosity in used SAW measurements. In addition, capacitance and light transmition investigations supported SAW results and pointed out conclusions about their magnetic field behavior. Obtained results are discussed and confronted with previous ones and coincide well with those observed using acoustic, optical, or dielectric techniques.

4.
Nanomaterials (Basel) ; 10(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317168

RESUMEN

Dextran-coated magnetic nanoparticles are promising biocompatible agents in various biomedical applications, including hyperthermia and magnetic resonance imaging (MRI). However, the influence of dextran molecular weight on the physical properties of dextran-coated magnetic nanoparticles has not been described sufficiently. We synthesise magnetite nanoparticles with a dextran coating using a co-precipitation method and study their physical properties as a function of dextran molecular weight. Several different methods are used to determine the size distribution of the particles, including microscopy, dynamic light scattering, differential centrifugal sedimentation and magnetic measurements. The size of the dextran-coated particles increases with increasing dextran molecular weight. We find that the molecular weight of dextran has a significant effect on the particle size, efficiency, magnetic properties and specific absorption rate. Magnetic hyperthermia measurements show that heating is faster for dextran-coated particles with higher molecular weight. The different molecular weights of the coating also significantly affected its MRI relaxation properties, especially the transversal relaxivity r2. Linear regression analysis reveals a statistically significant dependence of r2 on the differential centrifugal sedimentation diameter. This allows the targeted preparation of dextran-coated magnetic nanoparticles with the desired MRI properties. These results will aid the development of functionalised magnetic nanoparticles for hyperthermia and MRI applications.

5.
Front Chem ; 8: 205, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328477

RESUMEN

Magnetic and temperature-sensitive solid lipid particles (mag. SLPs) were prepared in the presence of oleic acid-coated iron oxide (IO-OA) nanoparticles with 1-tetradecanol and poly(ethylene oxide)-block-poly(ε-caprolactone) as lipid and stabilizing surfactant-like agents, respectively. The particles, typically ~850 nm in hydrodynamic size, showed heat dissipation under the applied alternating magnetic field. Cytotoxic activity of the mag.SLPs, non-magnetic SLPs, and iron oxide nanoparticles was compared concerning the mammalian cancer cell lines and their drug-resistant counterparts using trypan blue exclusion test and MTT assay. The mag.SLPs exhibited dose-dependent cytotoxicity against human leukemia cell lines growing in suspension (Jurkat and HL-60/wt), as well as the doxorubicin (Dox)- and vincristine-resistant HL-60 sublines. The mag.SLPs showed higher cytotoxicity toward drug-resistant sublines as compared to Dox. The human glioblastoma cell line U251 growing in a monolayer culture was also sensitive to mag.SLPs cytotoxicity. Staining of U251 cells with the fluorescent dyes Hoechst 33342 and propidium iodide (PI) revealed that mag.SLPs treatment resulted in an increased number of cells with condensed chromatin and/or fragmented nuclei as well as with blebbing of the plasma membranes. While the Hoechst 33342 staining of cell suggested the pro-apoptotic activity of the particles, the PI staining indicated the pro-necrotic changes in the target cells. These conclusions were confirmed by Western blot analysis of apoptosis-related proteins, study of DNA fragmentation (DNA laddering due to the inter-nucleosomal cleavage and DNA comets due to single strand breaks), as well as by FACS analysis of the patterns of cell cycle distribution (pre-G1 phase) and Annexin V/PI staining of the treated Jurkat cells. The induction of apoptosis or necrosis by the particles used to treat Jurkat cells depended on the dose of the particles. Production of the reactive oxygen species (ROS) was proposed as a potential mechanism of mag.SLPs-induced cytotoxicity. Accordingly, hydrogen peroxide and superoxide radical levels in mag.SLPs-treated Jurkat leukemic cells were increased by ~20-40 and ~70%, respectively. In contrast, the non-magnetic SLPs and neat iron oxides did not influence ROS levels significantly. Thus, the developed mag.SLPs can be used for effective killing of human tumor cells, including drug-resistant ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...