Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Imaging (Bellingham) ; 11(5): 054002, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39220049

RESUMEN

Purpose: Interpreting echocardiographic exams requires substantial manual interaction as videos lack scan-plane information and have inconsistent image quality, ranging from clinically relevant to unrecognizable. Thus, a manual prerequisite step for analysis is to select the appropriate views that showcase both the target anatomy and optimal image quality. To automate this selection process, we present a method for automatic classification of routine views, recognition of unknown views, and quality assessment of detected views. Approach: We train a neural network for view classification and employ the logit activations from the neural network for unknown view recognition. Subsequently, we train a linear regression algorithm that uses feature embeddings from the neural network to predict view quality scores. We evaluate the method on a clinical test set of 2466 echocardiography videos with expert-annotated view labels and a subset of 438 videos with expert-rated view quality scores. A second observer annotated a subset of 894 videos, including all quality-rated videos. Results: The proposed method achieved an accuracy of 84.9 % ± 0.67 for the joint objective of routine view classification and unknown view recognition, whereas a second observer reached an accuracy of 87.6%. For view quality assessment, the method achieved a Spearman's rank correlation coefficient of 0.71, whereas a second observer reached a correlation coefficient of 0.62. Conclusion: The proposed method approaches expert-level performance, enabling fully automatic selection of the most appropriate views for manual or automatic downstream analysis.

2.
Eur Heart J Digit Health ; 5(2): 170-182, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505485

RESUMEN

Aims: The European Society of Cardiology guidelines recommend risk stratification with limited clinical parameters such as left ventricular (LV) function in patients with chronic coronary syndrome (CCS). Machine learning (ML) methods enable an analysis of complex datasets including transthoracic echocardiography (TTE) studies. We aimed to evaluate the accuracy of ML using clinical and TTE data to predict all-cause 5-year mortality in patients with CCS and to compare its performance with traditional risk stratification scores. Methods and results: Data of consecutive patients with CCS were retrospectively collected if they attended the outpatient clinic of Amsterdam UMC location AMC between 2015 and 2017 and had a TTE assessment of the LV function. An eXtreme Gradient Boosting (XGBoost) model was trained to predict all-cause 5-year mortality. The performance of this ML model was evaluated using data from the Amsterdam UMC location VUmc and compared with the reference standard of traditional risk scores. A total of 1253 patients (775 training set and 478 testing set) were included, of which 176 patients (105 training set and 71 testing set) died during the 5-year follow-up period. The ML model demonstrated a superior performance [area under the receiver operating characteristic curve (AUC) 0.79] compared with traditional risk stratification tools (AUC 0.62-0.76) and showed good external performance. The most important TTE risk predictors included in the ML model were LV dysfunction and significant tricuspid regurgitation. Conclusion: This study demonstrates that an explainable ML model using TTE and clinical data can accurately identify high-risk CCS patients, with a prognostic value superior to traditional risk scores.

3.
Front Cardiovasc Med ; 10: 1211322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547247

RESUMEN

Background: The European Society of Cardiology 2019 Guidelines on chronic coronary syndrome (CCS) recommend echocardiographic measurement of the left ventricular function for risk stratification in all patients with CCS. Whereas CCS and valvular heart disease (VHD) share common pathophysiological pathways and risk factors, data on the impact of VHD in CCS patients are scarce. Methods: Clinical data including treatment and mortality of patients diagnosed with CCS who underwent comprehensive transthoracic echocardiography (TTE) in two tertiary centers were collected. The outcome was all-cause mortality. Data were analyzed with Kaplan-Meier curves and Cox proportional hazard analysis adjusting for significant covariables and time-dependent treatment. Results: Between 2014 and 2021 a total of 1,984 patients with CCS (59% men) with a median age of 65 years (interquartile range [IQR] 57-73) underwent comprehensive TTE. Severe VHD was present in 44 patients and moderate VHD in 325 patients. A total of 654 patients (33%) were treated with revascularization, 39 patients (2%) received valve repair or replacement and 299 patients (15%) died during the median follow-up time of 3.5 years (IQR 1.7-5.6). Moderate or severe VHD (hazard ratio = 1.33; 95% CI 1.02-1.72) was significantly associated with mortality risk, independent of LV function and other covariables, as compared to no/mild VHD. Conclusions: VHD has a significant impact on mortality in patients with CCS additional to LV dysfunction, which emphasizes the need for a comprehensive echocardiographic assessment in these patients.

4.
Curr Cardiol Rep ; 24(4): 365-376, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35347566

RESUMEN

PURPOSE OF REVIEW: Artificial intelligence (AI) applications in (interventional) cardiology continue to emerge. This review summarizes the current state and future perspectives of AI for automated imaging analysis in invasive coronary angiography (ICA). RECENT FINDINGS: Recently, 12 studies on AI for automated imaging analysis In ICA have been published. In these studies, machine learning (ML) models have been developed for frame selection, segmentation, lesion assessment, and functional assessment of coronary flow. These ML models have been developed on monocenter datasets (in range 31-14,509 patients) and showed moderate to good performance. However, only three ML models were externally validated. Given the current pace of AI developments for the analysis of ICA, less-invasive, objective, and automated diagnosis of CAD can be expected in the near future. Further research on this technology in the catheterization laboratory may assist and improve treatment allocation, risk stratification, and cath lab logistics by integrating ICA analysis with other clinical characteristics.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Isquemia Miocárdica , Inteligencia Artificial , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Humanos , Isquemia Miocárdica/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...