Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 45(8): 1013-1027, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37227598

RESUMEN

Bioactive materials interact with cells and modulate their characteristics which enable the generation of cell-based products with desired specifications. However, their evaluation and impact are often overlooked when establishing a cell therapy manufacturing process. In this study, we investigated the role of different surfaces for tissue culture including, untreated polystyrene surface, uncoated Cyclic Olefin Polymer (COP) and COP coated with collagen and recombinant fibronectin. It was observed that human mesenchymal stromal cells (hMSCs) expanded on COP-coated plates with different bioactive materials resulted in improved cell growth kinetics compared to traditional polystyrene plates and non-coated COP plates. The doubling time obtained was 2.78 and 3.02 days for hMSC seeded in COP plates coated with collagen type I and recombinant fibronectin respectively, and 4.64 days for cells plated in standard polystyrene treated plates. Metabolite analysis reinforced the findings of the growth kinetic studies, specifically that cells cultured on COP plates coated with collagen I and fibronectin exhibited improved growth as evidenced by a higher lactate production rate (9.38 × 105 and 9.67 × 105 pmol/cell/day, respectively) compared to cells from the polystyrene group (5.86 × 105 pmol/cell/day). This study demonstrated that COP is an effective alternative to polystyrene-treated plates when coated with bioactive materials such as collagen and fibronectin, however COP-treated plates without additional coatings were found not to be sufficient to support cell growth. These findings demonstrate the key role biomaterials play in the cell manufacturing process and the importance of optimising this selection.


Asunto(s)
Fibronectinas , Células Madre Mesenquimatosas , Humanos , Fibronectinas/farmacología , Células Cultivadas , Poliestirenos , Cinética , Proliferación Celular , Colágeno Tipo I
3.
Bio Protoc ; 12(6): e4359, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35434187

RESUMEN

The lumen of blood vessels is covered by endothelial cells, which regulate their permeability to ions and solutes. Endothelial permeability depends on the vascular bed and cell phenotype, and is influenced by different disease states. Most characterization of endothelial permeability has been carried out using isolated cells in culture. While analysis of cultured cells is a valuable approach, it does not account for factors of the native cell environment. Building on Ussing chamber studies of intact tissue specimens, here we describe a method to measure the electrophysiological properties of intact arteriole and venule endothelia, including transendothelial electrical resistance (TEER) and ion permselectivity. As an example, vessels isolated from the mesentery were treated ex vivo, then mounted in a custom-made tissue cassette that enable their analysis by classical approaches with an Ussing chamber. This method enables a detailed analysis of electrophysiological vessel responses to stresses such as proinflammatory cytokines, in the context of an intact vessel. Graphic abstract.

4.
Sci Rep ; 12(1): 1540, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087167

RESUMEN

Primary cells isolated from the human respiratory tract are the state-of-the-art for in vitro airway epithelial cell research. Airway cell isolates require media that support expansion of cells in a basal state to maintain the capacity for differentiation as well as proper cellular function. By contrast, airway cell differentiation at an air-liquid interface (ALI) requires a distinct medium formulation that typically contains high levels of glucose. Here, we expanded and differentiated human basal cells isolated from the nasal and conducting airway to a mature mucociliary epithelial cell layer at ALI using a medium formulation containing normal resting glucose levels. Of note, bronchial epithelial cells expanded and differentiated in normal resting glucose medium showed insulin-stimulated glucose uptake which was inhibited by high glucose concentrations. Normal glucose containing ALI also enabled differentiation of nasal and tracheal cells that showed comparable electrophysiological profiles when assessed for cystic fibrosis transmembrane conductance regulator (CFTR) function and that remained responsive for up to 7 weeks in culture. These data demonstrate that normal glucose containing medium supports differentiation of primary nasal and lung epithelial cells at ALI, is well suited for metabolic studies, and avoids pitfalls associated with exposure to high glucose.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística
5.
Sci Signal ; 14(672)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653920

RESUMEN

The endothelial cell barrier regulates the passage of fluid between the bloodstream and underlying tissues, and barrier function impairment exacerbates the severity of inflammatory insults. To understand how inflammation alters vessel permeability, we studied the effects of the proinflammatory cytokine TNFα on transendothelial permeability and electrophysiology in ex vivo murine veins and arteries. We found that TNFα specifically decreased the barrier function of venous endothelium without affecting that of arterial endothelium. On the basis of RNA expression profiling and protein analysis, we found that claudin-11 (CLDN11) was the predominant claudin in venous endothelial cells and that there was little, if any, CLDN11 in arterial endothelial cells. Consistent with a difference in claudin composition, TNFα increased the permselectivity of Cl- over Na+ in venous but not arterial endothelium. The vein-specific effects of TNFα also required the activation of Pannexin 1 (Panx1) channels and the CD39-mediated hydrolysis of ATP to adenosine, which subsequently stimulated A2A adenosine receptors. Moreover, the increase in vein permeability required the activation of the Ca2+ channel TRPV4 downstream of Panx1 activation. Panx1-deficient mice resisted the pathologic effects of sepsis induced by cecal ligation and puncture on life span and lung vascular permeability. These data provide a targetable pathway with the potential to promote vein barrier function and prevent the deleterious effects of vascular leak in response to inflammation.


Asunto(s)
Conexinas , Células Endoteliales , Proteínas del Tejido Nervioso , Factor de Necrosis Tumoral alfa , Animales , Permeabilidad Capilar , Conexinas/genética , Conexinas/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Permeabilidad , Canales Catiónicos TRPV/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int Forum Allergy Rhinol ; 8(10): 1184-1189, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29897665

RESUMEN

BACKGROUND: The endocannabinoid system represents a highly conserved, innate signaling network with direct and indirect control of eicosanoid-mediated inflammation. Activation of the type 2 cannabinoid receptor (CB2R) leads to decreased type 2 inflammation and reduced production of arachidonic acid (AA). Given that altered AA metabolism is associated with aspirin-exacerbated respiratory disease (AERD), we hypothesized that expression of the CB2R gene CNR2 is increased in AERD. METHODS: Nasal polyps from consecutive patients undergoing endoscopic sinus surgery for AERD or allergic fungal rhinosinusitis (AFRS) were prospectively evaluated. Control sphenoid mucosa was collected from patients undergoing endoscopic skull base procedures. Expression and localization of endocannabinoid receptors were evaluated by quantitative reverse transcript-polymerase chain reaction (qRT-PCR) and immunohistochemistry. A 2-group unpaired t test with unequal variances was used to evaluate group differences. RESULTS: Thirteen subjects were included in this pilot study, including 5 controls, 5 AFRS patients, and 3 AERD patients. Upregulated expression of CNR2 was detected in subjects with AERD vs both AFRS (p = 0.049) and controls (p = 0.047), with a mean increase of 5.2-fold. No significant differences in expression of the CB1R gene CNR1 were detected between control and AFRS groups. Immunohistochemistry predominantly localized CB1R and CB2R expression to the surface epithelium in all subjects. CONCLUSION: The endocannabinoid system is an emerging immunomodulatory network that may be involved in AERD. This is the first study of CB2R in sinonasal disease, showing significantly increased transcription in nasal polyps from subjects with AERD. Additional study is warranted to further evaluate the contribution and therapeutic potential of this novel finding in chronic rhinosinusitis.


Asunto(s)
Asma Inducida por Aspirina/genética , Receptor Cannabinoide CB2/genética , Regulación hacia Arriba , Adolescente , Adulto , Asma Inducida por Aspirina/metabolismo , Asma Inducida por Aspirina/patología , Enfermedad Crónica , Epitelio/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Pólipos Nasales/metabolismo , Pólipos Nasales/patología , Proyectos Piloto , Receptor Cannabinoide CB2/metabolismo , Rinitis Alérgica/genética , Rinitis Alérgica/metabolismo , Rinitis Alérgica/patología , Sinusitis/metabolismo , Sinusitis/patología , Adulto Joven
7.
J Virol ; 92(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29263264

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants, and an effective vaccine is not yet available. We previously generated an RSV live-attenuated vaccine (LAV) candidate, DB1, which was attenuated by a low-fusion subgroup B F protein (BAF) and codon-deoptimized nonstructural protein genes. DB1 was immunogenic and protective in cotton rats but lacked thermostability and stability of the prefusion conformation of F compared to strains with the line19F gene. We hypothesized that substitution of unique residues from the thermostable A2-line19F strain could thermostabilize DB1 and boost its immunogenicity. We therefore substituted 4 unique line19F residues into the BAF protein of DB1 by site-directed mutagenesis and rescued the recombinant virus, DB1-QUAD. Compared to DB1, DB1-QUAD had improved thermostability at 4°C and higher levels of prefusion F as measured by enzyme-linked immunosorbent assays (ELISAs). DB1-QUAD was attenuated in normal human bronchial epithelial cells, in BALB/c mice, and in cotton rats but grew to wild-type titers in Vero cells. In mice, DB1-QUAD was highly immunogenic and generated significantly higher neutralizing antibody titers to a panel of RSV A and B strains than did DB1. DB1-QUAD was also efficacious against wild-type RSV challenge in mice and cotton rats. Thus, substitution of unique line19F residues into RSV LAV DB1 enhanced vaccine thermostability, incorporation of prefusion F, and immunogenicity and generated a promising vaccine candidate that merits further investigation.IMPORTANCE We boosted the thermostability and immunogenicity of an RSV live-attenuated vaccine candidate by substituting 4 unique residues from the RSV line19F protein into the F protein of the heterologous vaccine strain DB1. The resultant vaccine candidate, DB1-QUAD, was thermostable, attenuated in vivo, highly immunogenic, and protective against RSV challenge in mice and cotton rats.


Asunto(s)
Calor , Inmunogenicidad Vacunal/genética , Mutagénesis Sitio-Dirigida , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión , Animales , Chlorocebus aethiops , Humanos , Ratones , Ratones Endogámicos BALB C , Vacunas contra Virus Sincitial Respiratorio/genética , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Sigmodontinae , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Células Vero , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/inmunología
8.
Exp Cell Res ; 355(2): 153-161, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28390677

RESUMEN

Transport of therapeutic agents across epithelial barriers is an important element in drug delivery. Transepithelial flux is widely used as a measure of transit across an epithelium, however it is most typically employed as a relative as opposed to absolute measure of molecular movement. Here, we have used the calcium switch approach to measure the maximum rate of paracellular flux through unencumbered intercellular junctions as a method to calibrate the flux rates for a series of tracers ranging in 0.6-900kDa in size across barriers composed of human colon epithelial (Caco-2) cells. We then examined the effects of nanostructured films (NSFs) on transepithelial transport. Two different NSF patterns were used, Defined Nanostructure (DN) 2 imprinted on polypropylene (PP) and DN3 imprinted on polyether ether ketone (PEEK). NSFs made direct contact with cells and decreased their barrier function, as measured by transepithelial resistance (TER), however cell viability was not affected. When NSF-induced transepithelial transport of Fab fragment (55kDa) and IgG (160kDa) was measured, it was unexpectedly found to be significantly greater than the maximum paracellular rate as predicted using cells cultured in low calcium. These data suggested that NSFs stimulate an active transport pathway, most likely transcytosis, in addition to increasing paracellular flux. Transport of IgG via transcytosis was confirmed by immunofluorescence confocal microscopy, since NSFs induced a significant level of IgG endocytosis by Caco-2 cells. Thus, NSF-induced IgG flux was attributable to both transcytosis and the paracellular route. These data provide the first demonstration that transcytosis can be stimulated by NSFs and that this was concurrent with increased paracellular permeability. Moreover, NSFs with distinct architecture paired with specific substrates have the potential to provide an effective means to regulate transepithelial transport in order to optimize drug delivery.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Nanoestructuras/química , Transcitosis/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Propiedades de Superficie
9.
FASEB J ; 31(8): 3608-3621, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28442545

RESUMEN

Pseudomonas aeruginosa is a significant contributor to recalcitrant multidrug-resistant infections, especially in immunocompromised and hospitalized patients. The pathogenic profile of P. aeruginosa is related to its ability to secrete a variety of virulence factors and to promote biofilm formation. Quorum sensing (QS) is a mechanism wherein P. aeruginosa secretes small diffusible molecules, specifically acyl homo serine lactones, such as N-(3-oxo-dodecanoyl)-l-homoserine lactone (3O-C12-HSL), that promote biofilm formation and virulence via interbacterial communication. Strategies that strengthen the host's ability to inhibit bacterial virulence would enhance host defenses and improve the treatment of resistant infections. We have recently shown that peroxisome proliferator-activated receptor γ (PPARγ) agonists are potent immunostimulators that play a pivotal role in host response to virulent P. aeruginosa Here, we show that QS genes in P. aeruginosa (strain PAO1) and 3O-C12-HSL attenuate PPARγ expression in bronchial epithelial cells. PAO1 and 3O-C12-HSL induce barrier derangements in bronchial epithelial cells by lowering the expression of junctional proteins, such as zonula occludens-1, occludin, and claudin-4. Expression of these proteins was restored in cells that were treated with pioglitazone, a PPARγ agonist, before infection with PAO1 and 3O-C12-HSL. Barrier function and bacterial permeation studies that have been performed in primary human epithelial cells showed that PPARγ agonists are able to restore barrier integrity and function that are disrupted by PAO1 and 3O-C12-HSL. Mechanistically, we show that these effects are dependent on the induction of paraoxonase-2, a QS hydrolyzing enzyme, that mitigates the effects of QS molecules. Importantly, our data show that pioglitazone, a PPARγ agonist, significantly inhibits biofilm formation on epithelial cells by a mechanism that is mediated via paraoxonase-2. These findings elucidate a novel role for PPARγ in host defense against P. aeruginosa Strategies that activate PPARγ can provide a therapeutic complement for treatment of resistant P. aeruginosa infections.-Bedi, B., Maurice, N. M., Ciavatta, V. T., Lynn, K. S., Yuan, Z., Molina, S. A., Joo, M., Tyor, W. R., Goldberg, J. B., Koval, M., Hart, C. M., Sadikot, R. T. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa.


Asunto(s)
Proteínas Bacterianas/farmacología , Biopelículas/crecimiento & desarrollo , PPAR gamma/agonistas , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Línea Celular , Células Epiteliales/microbiología , Regulación de la Expresión Génica/fisiología , Humanos , Mutación , Pseudomonas aeruginosa/genética , Percepción de Quorum
10.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L688-L702, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213469

RESUMEN

Cystic fibrosis-related diabetes is the most common comorbidity associated with cystic fibrosis (CF) and correlates with increased rates of lung function decline. Because glucose is a nutrient present in the airways of patients with bacterial airway infections and because insulin controls glucose metabolism, the effect of insulin on CF airway epithelia was investigated to determine the role of insulin receptors and glucose transport in regulating glucose availability in the airway. The response to insulin by human airway epithelial cells was characterized by quantitative PCR, immunoblot, immunofluorescence, and glucose uptake assays. Phosphatidylinositol 3-kinase/protein kinase B (Akt) signaling and cystic fibrosis transmembrane conductance regulator (CFTR) activity were analyzed by pharmacological and immunoblot assays. We found that normal human primary airway epithelial cells expressed glucose transporter 4 and that application of insulin stimulated cytochalasin B-inhibitable glucose uptake, consistent with a requirement for glucose transporter translocation. Application of insulin to normal primary human airway epithelial cells promoted airway barrier function as demonstrated by increased transepithelial electrical resistance and decreased paracellular flux of small molecules. This provides the first demonstration that airway cells express insulin-regulated glucose transporters that act in concert with tight junctions to form an airway glucose barrier. However, insulin failed to increase glucose uptake or decrease paracellular flux of small molecules in human airway epithelia expressing F508del-CFTR. Insulin stimulation of Akt1 and Akt2 signaling in CF airway cells was diminished compared with that observed in airway cells expressing wild-type CFTR. These results indicate that the airway glucose barrier is regulated by insulin and is dysfunctional in CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Insulina/metabolismo , Pulmón/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Líquido del Lavado Bronquioalveolar , Línea Celular Transformada , Polaridad Celular , Activación Enzimática , Células Epiteliales/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Receptor de Insulina/metabolismo
11.
Nat Commun ; 7: 12276, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27452368

RESUMEN

Claudins are tetraspan transmembrane tight-junction proteins that regulate epithelial barriers. In the distal airspaces of the lung, alveolar epithelial tight junctions are crucial to regulate airspace fluid. Chronic alcohol abuse weakens alveolar tight junctions, priming the lung for acute respiratory distress syndrome, a frequently lethal condition caused by airspace flooding. Here we demonstrate that in response to alcohol, increased claudin-5 paradoxically accompanies an increase in paracellular leak and rearrangement of alveolar tight junctions. Claudin-5 is necessary and sufficient to diminish alveolar epithelial barrier function by impairing the ability of claudin-18 to interact with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the ability of another claudin to interact with the tight-junction scaffold. Critically, a claudin-5 peptide mimetic reverses the deleterious effects of alcohol on alveolar barrier function. Thus, claudin controlled claudin-scaffold protein interactions are a novel target to regulate tight-junction permeability.


Asunto(s)
Claudina-5/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Potenciales de Acción/efectos de los fármacos , Alcoholes/toxicidad , Animales , Claudina-5/química , Vesículas Citoplasmáticas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Masculino , Fusión de Membrana , Péptidos/metabolismo , Permeabilidad , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Alveolos Pulmonares/patología , Ratas Sprague-Dawley , Solubilidad , Uniones Estrechas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
12.
Am J Physiol Lung Cell Mol Physiol ; 309(5): L475-87, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26115671

RESUMEN

Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTR(wt/wt)) and CuFi-5 (CFTR(ΔF508/ΔF508)) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na(+) channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Uniones Comunicantes/patología , Mucosa Respiratoria/metabolismo , Uniones Estrechas/patología , Adulto , Señalización del Calcio/genética , Línea Celular , Colforsina/farmacología , Conexina 26 , Conexina 43/biosíntesis , Conexina 43/metabolismo , Conexinas/biosíntesis , Conexinas/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Células Epiteliales/metabolismo , Uniones Comunicantes/genética , Humanos , Masculino , Fenilbutiratos/farmacología , Transporte de Proteínas/efectos de los fármacos , Mucosa Respiratoria/citología , Uniones Estrechas/genética
13.
Semin Cell Dev Biol ; 42: 47-57, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25951797

RESUMEN

The lung must maintain a proper barrier between airspaces and fluid filled tissues in order to maintain lung fluid balance. Central to maintaining lung fluid balance are epithelial cells which create a barrier to water and solutes. The barrier function of these cells is mainly provided by tight junction proteins known as claudins. Epithelial barrier function varies depending on the different needs within the segments of the respiratory tree. In the lower airways, fluid is required to maintain mucociliary clearance, whereas in the terminal alveolar airspaces a thin layer of surfactant enriched fluid lowers surface tension to prevent airspace collapse and is critical for gas exchange. As the epithelial cells within the segments of the respiratory tree differ, the composition of claudins found in these epithelial cells is also different. Among these differences is claudin-18 which is uniquely expressed by the alveolar epithelial cells. Other claudins, notably claudin-4 and claudin-7, are more ubiquitously expressed throughout the respiratory epithelium. Claudin-5 is expressed by both pulmonary epithelial and endothelial cells. Based on in vitro and in vivo model systems and histologic analysis of lungs from human patients, roles for specific claudins in maintaining barrier function and protecting the lung from the effects of acute injury and disease are being identified. One surprising finding is that claudin-18 and claudin-4 control lung cell phenotype and inflammation beyond simply maintaining a selective paracellular permeability barrier. This suggests claudins have more nuanced roles for the control of airway and alveolar physiology in the healthy and diseased lung.


Asunto(s)
Claudinas/metabolismo , Pulmón/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Humanos , Mucosa Respiratoria/citología , Uniones Estrechas/metabolismo
14.
FEBS Lett ; 588(8): 1193-204, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24561196

RESUMEN

This review is based in part on a roundtable discussion session: "Physiological roles for heterotypic/heteromeric channels" at the 2013 International Gap Junction Conference (IGJC 2013) in Charleston, South Carolina. It is well recognized that multiple connexins can specifically co-assemble to form mixed gap junction channels with unique properties as a means to regulate intercellular communication. Compatibility determinants for both heteromeric and heterotypic gap junction channel formation have been identified and associated with specific connexin amino acid motifs. Hetero-oligomerization is also a regulated process; differences in connexin quality control and monomer stability are likely to play integral roles to control interactions between compatible connexins. Gap junctions in oligodendrocyte:astrocyte communication and in the cardiovascular system have emerged as key systems where heterotypic and heteromeric channels have unique physiologic roles. There are several methodologies to study heteromeric and heterotypic channels that are best applied to either heterologous expression systems, native tissues or both. There remains a need to use and develop different experimental approaches in order to understand the prevalence and roles for mixed gap junction channels in human physiology.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Multimerización de Proteína , Secuencia de Aminoácidos , Animales , Conexinas/química , Humanos , Datos de Secuencia Molecular , Transporte de Proteínas
15.
Commun Integr Biol ; 5(2): 114-7, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22808311

RESUMEN

Gap junctions are multimeric membrane protein channels that connect the cytoplasm of one cell to another. Much information about connexins regards electrophysiology and channel function but relatively little information is known about non-channel functions of connexins. Lens connexins, Cx43, Cx46 and Cx50, have been extensively studied for their role in lens homeostasis. Connexins allow the movement of small metabolically relevant molecules and ions between cells and this action in the lens prevents cataract formation. Interruption of Cx46 channel function leads to cataract formation due to dysregulation of lens homeostasis. The loss of Cx46 upregulates Cx43 in lens cell culture and suppresses tumor growth in breast and retinoblastoma tumor xenografts. Upregulation of Cx46 in hypoxic tissues has been noted and may be due in part to the effects of hypoxia and HIF activators. Here, we report that the Cx46 promoter is regulated by hypoxia and also offer speculation about the role of Cx46 in lens differentiation and solid tumor growth.

16.
Curr Eye Res ; 36(7): 620-31, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21599470

RESUMEN

PURPOSE: To determine the role of PKCγ in the regulation of gap junction coupling in the normal lens, we have compared the properties of coupling in lenses from wild type (WT) and PKC-γ knockout (KO) mice. METHODS: Western blotting, confocal immunofluorescence microscopy, immunoprecipitation, RT-PCR and quantitative real time PCR were used to study gap junction protein and message expression; gap junction coupling conductance and pH gating were measured in intact lenses using impedance studies. RESULTS: There were no gross differences in size, clarity, or expression of full-length Cx46 or Cx50 in lenses from WT and PKCγ KO mice. However, total Cx43 protein expression was ~150% higher in the KO lenses. In WT lenses, Cx43 was found only in epithelial cells whereas in KO lenses, its expression continued into the fiber cells. Gap junction coupling conductance in the differentiating fibers (DF) of PKCγ KO lenses was 34% larger than that of WT. In the mature fiber (MF), the effect was much larger with the KO lenses having an 82% increase in coupling over WT. pH gating of the DF fibers was not altered by the absence of PKCγ. CONCLUSION: PKCγ has a major role in the regulation of gap junction expression and coupling in the normal lens.


Asunto(s)
Diferenciación Celular/fisiología , Conexina 43/metabolismo , Conexinas/metabolismo , Células Epiteliales/citología , Cristalino/citología , Proteína Quinasa C/fisiología , Animales , Western Blotting , Impedancia Eléctrica , Células Epiteliales/metabolismo , Uniones Comunicantes/fisiología , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Cristalino/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
J Biol Chem ; 286(27): 24519-33, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21606502

RESUMEN

Connexins are the transmembrane proteins that form gap junctions between adjacent cells. The function of the diverse connexin molecules is related to their tissue-specific expression and highly dynamic turnover. Although multiple connexins have been previously reported to compensate for each other's functions, little is known about how connexins influence their own expression or intracellular regulation. Of the three vertebrate lens connexins, two connexins, connexin43 (Cx43) and connexin46 (Cx46), show reciprocal expression and subsequent function in the lens and in lens cell culture. In this study, we investigate the reciprocal relationship between the expression of Cx43 and Cx46. Forced depletion of Cx43, by tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate, is associated with an up-regulation of Cx46 at both the protein and message level in human lens epithelial cells. An siRNA-mediated down-regulation of Cx43 results in an increase in the level of Cx46 protein, suggesting endogenous Cx43 is involved in the regulation of endogenous Cx46 turnover. Overexpression of Cx46, in turn, induces the depletion of Cx43 in rabbit lens epithelial cells. Cx46-induced Cx43 degradation is likely mediated by the ubiquitin-proteasome pathway, as (i) treatment with proteasome inhibitors restores the Cx43 protein level and (ii) there is an increase in Cx43 ubiquitin conjugation in Cx46-overexpressing cells. We also present data that shows that the C-terminal intracellular tail domain of Cx46 is essential to induce degradation of Cx43. Therefore, our study shows that Cx43 and Cx46 have novel functions in regulating each other's expression and turnover in a reciprocal manner in addition to their conventional roles as gap junction proteins in lens cells.


Asunto(s)
Conexina 43/biosíntesis , Conexinas/biosíntesis , Células Epiteliales/metabolismo , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica/fisiología , Cristalino/metabolismo , Animales , Carcinógenos/farmacología , Células Cultivadas , Conexina 43/genética , Conexinas/genética , Células Epiteliales/citología , Uniones Comunicantes/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Cristalino/citología , Conejos , Ratas , Acetato de Tetradecanoilforbol/farmacología
18.
Exp Eye Res ; 92(4): 251-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21320488

RESUMEN

Tumors with a hypoxic component, including human Y79 retinoblastoma cells, express a specific gap junction protein, Connexin 46 (Cx46), which is usually only found in naturally hypoxic tissues such as the differentiated lens. The aim of this study was to investigate if Cx46 downregulation would suppress Y79 tumor formation in vivo. Five-week old nude mice were subcutaneously implanted with human Y79 retinoblastoma cells and treated with intratumor siRNA injections of 30 µg Cx46 siRNA (n = 6), 30 µg non-silencing siRNA (n = 6), or no siRNA treatment (n = 6) every 2 days for a maximum of 10 treatments. Tumor volume (TV) was calculated from the recorded caliper measurements of length and width. Excised tumors were measured and weighed. Western blot analyses were performed to evaluate Cx46 and Cx43 expression in tumors which received Cx46 siRNA, non-silencing siRNA, or no siRNA treatment. Tumor histopathology was used to assess tumor features. Cx46 siRNA treated Y79 tumors had a reduced TV (287 mm(3) ± 77 mm(3)) when compared to the tumors of mice receiving the negative control siRNA (894 mm(3) ± 218 mm(3); P ≤ 0.03) or no siRNA (1068 mm(3) ± 192 mm(3); P ≤ 0.002). A 6-fold knockdown of Cx46 and a 3-fold rise in Cx43 protein expression was observed from western blots of tumors treated with Cx46 siRNA compared to mice treated with non-silencing siRNA. Knockdown of Cx46 with siRNA had an antitumor effect on human Y79 retinoblastoma tumors in the nude mouse model. The results suggest that anti-Cx46 therapy may be a potential target in the future treatment of retinoblastoma.


Asunto(s)
Conexinas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Neoplasias de la Retina/patología , Retinoblastoma/patología , Animales , Western Blotting , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Interferencia de ARN/efectos de los fármacos , Neoplasias de la Retina/genética , Retinoblastoma/genética , Transfección , Trasplante Heterólogo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA