Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurobiol Aging ; 106: 207-222, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303222

RESUMEN

The hippocampus is vulnerable to deterioration in Alzheimer's disease (AD). It is, however, a heterogeneous structure, which may contribute to the differential volumetric changes along its septotemporal axis during AD progression. Here, we investigated amyloid plaque deposition along the dorsoventral axis in two strains of transgenic AD (ADTg) mouse models. We also used patch-clamp physiology in these mice to probe for functional consequences of AD pathogenesis in ventral hippocampus, which we found bears significantly higher plaque burden in the aged ADTg group compared to corresponding dorsal regions. Despite dorsoventral differences in amyloid load, ventral CA1 pyramidal neurons of aged ADTg mice exhibited subthreshold physiological changes similar to those previously reported in dorsal neurons, indicative of an HCN channelopathy, but lacked exacerbated suprathreshold accommodation. Additionally, HCN channel function could be rescued by pharmacological manipulation of the endoplasmic reticulum. These observations suggest that an AD-linked HCN channelopathy emerges in both dorsal and ventral CA1 pyramidal neurons, but that the former encounter an additional integrative obstacle in the form of reduced intrinsic excitability.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Placa Amiloide/metabolismo , Células Piramidales/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ratones Transgénicos , Tamaño de los Órganos , Técnicas de Placa-Clamp
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593893

RESUMEN

Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."


Asunto(s)
Región CA1 Hipocampal/patología , Región CA3 Hipocampal/patología , Envejecimiento Cognitivo , Células Piramidales/patología , Sinapsis/patología , Animales , Masculino , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344
3.
Neurobiol Learn Mem ; 154: 141-157, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29906573

RESUMEN

Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Región CA1 Hipocampal/fisiología , Canalopatías/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Potenciales de Acción , Envejecimiento , Animales , Región CA1 Hipocampal/ultraestructura , Modelos Animales de Enfermedad , Retículo Endoplásmico/fisiología , Femenino , Masculino , Ratones Transgénicos , Células Piramidales/ultraestructura
4.
J Pharmacol Exp Ther ; 352(2): 395-404, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25472955

RESUMEN

ß-Subunits of voltage-gated calcium channels (VGCCs) regulate assembly and membrane localization of the pore-forming α1-subunit and strongly influence channel function. ß4-Subunits normally coassociate with α1A-subunits which comprise P/Q-type (Cav2.1) VGCCs. These control acetylcholine (ACh) release at adult mammalian neuromuscular junctions (NMJs). The naturally occurring lethargic (lh) mutation of the ß4-subunit in mice causes loss of the α1-binding site, possibly affecting P/Q-type channel expression or function, and thereby ACh release. End-plate potentials and miniature end-plate potentials were recorded at hemidiaphragm NMJs of 5-7-week and 3-5-month-old lh and wild-type (wt) mice. Sensitivity to antagonists of P/Q- [ω-agatoxin IVA (ω-Aga-IVA)], L- (nimodipine), N- (ω-conotoxin GVIA), and R-type [C192H274N52O60S7 (SNX-482)] VGCCs was compared in juvenile and adult lh and wt mice. Quantal content (m) of adult, but not juvenile, lh mice was reduced compared to wt. ω-Aga-IVA (~60%) and SNX-482 (~ 45%) significantly reduced m in adult lh mice. Only Aga-IVA affected wt adults. In juvenile lh mice, ω-Aga-IVA and SNX-482 decreased m by >75% and ~20%, respectively. Neither ω-conotoxin GVIA nor nimodipine affected ACh release in any group. Immunolabeling revealed α1E and α1A, ß1, and ß3 staining at adult lh, but not wt NMJs. Therefore, in lh mice, when the ß-subunit that normally coassociates with α1A to form P/Q channels is missing, P/Q-type channels partner with other ß-subunits. However, overall participation of P/Q-type channels is reduced and compensated for by R-type channels. R-type VGCC participation is age-dependent, but is less effective than P/Q-type at sustaining NMJ function.


Asunto(s)
Envejecimiento/metabolismo , Canales de Calcio Tipo P/metabolismo , Canales de Calcio Tipo Q/metabolismo , Canales de Calcio Tipo R/metabolismo , Canales de Calcio/genética , Unión Neuromuscular/metabolismo , Acetilcolina/metabolismo , Potenciales de Acción/efectos de los fármacos , Envejecimiento/genética , Animales , Bloqueadores de los Canales de Calcio/farmacología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Ratones Mutantes , Placa Motora/efectos de los fármacos , Placa Motora/metabolismo , Mutación , Unión Neuromuscular/efectos de los fármacos
5.
Brain Struct Funct ; 220(6): 3143-65, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25031178

RESUMEN

Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity.


Asunto(s)
Enfermedad de Alzheimer/patología , Región CA1 Hipocampal/patología , Dendritas/patología , Neuronas/patología , Células Piramidales/patología , Enfermedad de Alzheimer/metabolismo , Animales , Axones/metabolismo , Región CA1 Hipocampal/metabolismo , Células Cultivadas , Dendritas/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Plasticidad Neuronal , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Células Piramidales/metabolismo , Receptores AMPA/metabolismo , Sinapsis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...