Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 341: 122990, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37992950

RESUMEN

Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with most land plants. AM fungi regulate plant copper (Cu) acquisition both in Cu deficient and polluted soils. Here, we report characterization of RiCRD1, a Rhizophagus irregularis gene putatively encoding a Cu transporting ATPase. Based on its sequence analysis, RiCRD1 was identified as a plasma membrane Cu + efflux protein of the P1B1-ATPase subfamily. As revealed by heterologous complementation assays in yeast, RiCRD1 encodes a functional protein capable of conferring increased tolerance against Cu. In the extraradical mycelium, RiCRD1 expression was highly up-regulated in response to high concentrations of Cu in the medium. Comparison of the expression patterns of different players of metal tolerance in R. irregularis under high Cu levels suggests that this fungus could mainly use a metal efflux based-strategy to cope with Cu toxicity. RiCRD1 was also expressed in the intraradical fungal structures and, more specifically, in the arbuscules, which suggests a role for RiCRD1 in Cu release from the fungus to the symbiotic interface. Overall, our results show that RiCRD1 encodes a protein which could have a pivotal dual role in Cu homeostasis in R. irregularis, playing a role in Cu detoxification in the extraradical mycelium and in Cu transfer to the apoplast of the symbiotic interface in the arbuscules.


Asunto(s)
Glomeromycota , Micorrizas , Cobre/toxicidad , Adenosina Trifosfatasas , Transporte Iónico , Simbiosis , Raíces de Plantas
2.
J Fungi (Basel) ; 8(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35736075

RESUMEN

Transporters of the NRAMP family are ubiquitous metal-transition transporters, playing a key role in metal homeostasis, especially in Mn and Fe homeostasis. In this work, we report the characterization of the NRAMP family members (RiSMF1, RiSMF2, RiSMF3.1 and RiSMF3.2) of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis. Phylogenetic analysis of the NRAMP sequences of different AM fungi showed that they are classified in two groups, which probably diverged early in their evolution. Functional analyses in yeast revealed that RiSMF3.2 encodes a protein mediating Mn and Fe transport from the environment. Gene-expression analyses by RT-qPCR showed that the RiSMF genes are differentially expressed in the extraradical (ERM) and intraradical (IRM) mycelium and differentially regulated by Mn and Fe availability. Mn starvation decreased RiSMF1 transcript levels in the ERM but increased RiSMF3.1 expression in the IRM. In the ERM, RiSMF1 expression was up-regulated by Fe deficiency, suggesting a role for its encoded protein in Fe-deficiency alleviation. Expression of RiSMF3.2 in the ERM was up-regulated at the early stages of Fe toxicity but down-regulated at later stages. These data suggest a role for RiSMF3.2 not only in Fe transport but also as a sensor of high external-Fe concentrations. Both Mn- and Fe-deficient conditions affected ERM development. While Mn deficiency increased hyphal length, Fe deficiency reduced sporulation.

3.
J Appl Genet ; 56(1): 77-84, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25056710

RESUMEN

In this study we have developed protocols for induced triploidy and gynogenesis of Senegalese sole (Solea senegalensis), a promising flatfish species for marine aquaculture, in order to: 1) identify the sex-determination mechanism; and 2) to improve its production by generating a) sterile fish, avoiding problems related with sexual maturation, and b) all-female stocks, of higher growth rate. Triploidy was induced by means of a cold shock. Gynogenesis was induced by activating eggs with UV-irradiated sperm, and to prompt diploid gynogenesis, a cold-shock step was also used. Ploidy of putative triploid larvae and gynogenetic embryos were determined by means of karyotyping and microsatellite analysis. Haploid gynogenetic embryos showed the typical "haploid syndrome". As expected, triploid and gynogenetic groups showed lower fertilization, hatching, and survival rates than in the diploid control group. Survival rate, calculated 49 days after hatching, for haploid and diploid gynogenetic groups was similar to those observed in other fish species (0% and 62.5%, respectively), whereas triploids showed worse values (45%). Sex was determined macroscopically and by histological procedures, revealing that all the diploid gynogenetic individuals were females. In conclusion, we have successfully applied chromosomal-manipulation techniques in the flatfish species Senegalese sole in order to produce triploid, haploid, and diploid gynogenetic progenies.


Asunto(s)
Peces Planos/genética , Procesos de Determinación del Sexo , Triploidía , Animales , Cromosomas , Femenino , Haploidia , Cariotipificación , Masculino , Repeticiones de Microsatélite , Análisis para Determinación del Sexo , Espermatozoides/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...