Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(28): 19880-19890, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38903676

RESUMEN

We report a computational study where we explore the possibility of tuning the electronic properties of orthorhombic methylammonium tin iodide CH3NH3SnI3 using strains. According to our findings, a moderate [001] strain, smaller than 2%, would open the band gap up to 1.25 eV and enhance the exciton binding energy, opening up new possibilities for the use of CH3NH3SnI3 in technological applications. To better understand the impact of strain, we also examined its influence on bonding properties. The results reveal that the directional pnictogen and the hydrogen bonding are not altered by strains and that the tuning of the electronic properties is the result of changes induced in the orbital contributions to states near the Fermi level and the tilting of the SnI6 octahedral units.

2.
Nano Lett ; 23(20): 9235-9242, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37751559

RESUMEN

The coupling of the electron system to lattice vibrations and their time-dependent control and detection provide unique insight into the nonequilibrium physics of semiconductors. Here, we investigate the ultrafast transient response of semiconducting monolayer 2H-MoTe2 encapsulated with hBN using broadband optical pump-probe microscopy. The sub-40 fs pump pulse triggers extremely intense and long-lived coherent oscillations in the spectral region of the A' and B' exciton resonances, up to ∼20% of the maximum transient signal, due to the displacive excitation of the out-of-plane A1g phonon. Ab initio calculations reveal a dramatic rearrangement of the optical absorption of monolayer MoTe2 induced by an out-of-plane stretching and compression of the crystal lattice, consistent with an A1g -type oscillation. Our results highlight the extreme sensitivity of the optical properties of monolayer TMDs to small structural modifications and their manipulation with light.

3.
ACS Nano ; 15(1): 1179-1185, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33382589

RESUMEN

We calculate the time evolution of the transient reflection signal in an MoS2 monolayer on a SiO2/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers toward small Active Excitonic Regions around K, enhancing the dielectric screening. The accompanying time-dependent band gap renormalization dominates over Pauli blocking and the excitonic binding energy renormalization. This explains the delayed buildup of the transient reflection signal of the probe pulse, in excellent agreement with recent experimental data. Our results show that the observed delay is not a unique signature of an exciton formation process but rather caused by coordinated carrier dynamics and its influence on the screening.

4.
ACS Appl Nano Mater ; 4(6): 6170-6177, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35698624

RESUMEN

An outstanding potentiality of layered two-dimensional (2D) organic-inorganic hybrid perovskites (2DHPs) is in the development of solar cells, photodetectors, and light-emitting diodes. In 2DHPs, an exciton is localized in an atomically thin lead(II) halide inorganic layer of sub-nanometer thickness as in a quantum well sandwiched between organic layers as energetic and dielectric barriers. In previous years, versatile optical characterization of 2DHPs has been carried out mainly for thin flakes of single crystals and ultrathin (of the order of 20 nm) polycrystalline films, whereas there is a lack of optical characterization of thick (hundreds of nanometers) polycrystalline films, fundamentals for fabrication of devices. Here, with the use of photoluminescence (PL) and absorption spectroscopies, we studied the exciton behavior in ∼200 nm polycrystalline thin films of 2D perovskite (PEA)2PbI4, where PEA is phenethylammonium. Contrary to the case of ultrathin films, we have found that peak energies and line width of the excitonic bands in our films demonstrate unusual extremely weak sensitivity to temperature in 20-300 K diapason. The excitonic PL band is characterized by a significant (∼30 meV) Stokes shift with respect to the corresponding absorption band as well as by a full absence of the exciton fine structure at cryogenic temperatures. We suggest that the observed effects are due to the large inhomogeneous broadening of the excitonic PL and absorption bands resulting from the (PEA)2PbI4 band gap energy dependence on the number of lead(II) halide layers of individual crystallites. The characteristic time of the exciton energy funneling from higher- to lower-energy crystallites within (PEA)2PbI4 polycrystalline thin films is about 100 ps.

5.
Nat Mater ; 19(6): 630-636, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32451512

RESUMEN

Van der Waals heterostructures offer attractive opportunities to design quantum materials. For instance, transition metal dichalcogenides (TMDs) possess three quantum degrees of freedom: spin, valley index and layer index. Furthermore, twisted TMD heterobilayers can form moiré patterns that modulate the electronic band structure according to the atomic registry, leading to spatial confinement of interlayer excitons (IXs). Here we report the observation of spin-layer locking of IXs trapped in moiré potentials formed in a heterostructure of bilayer 2H-MoSe2 and monolayer WSe2. The phenomenon of locked electron spin and layer index leads to two quantum-confined IX species with distinct spin-layer-valley configurations. Furthermore, we observe that the atomic registries of the moiré trapping sites in the three layers are intrinsically locked together due to the 2H-type stacking characteristic of bilayer TMDs. These results identify the layer index as a useful degree of freedom to engineer tunable few-level quantum systems in two-dimensional heterostructures.

6.
ACS Nano ; 14(5): 5700-5710, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32233453

RESUMEN

We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution (∼20 fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single-layer (1L)-MoS2, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane A'1 phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a time scale of few tens of fs. We observe an enhancement by almost 2 orders of magnitude of the CP amplitude when detected in resonance with the C exciton peak, combined with a resonant enhancement of CP generation efficiency. Ab initio calculations of the change in the 1L-MoS2 band structure induced by the A'1 phonon displacement confirm a strong coupling with the C exciton. The resonant behavior of the CP amplitude follows the same spectral profile of the calculated Raman susceptibility tensor. These results explain the CP generation process in 1L-TMDs and demonstrate that CP excitation in 1L-MoS2 can be described as a Raman-like scattering process.

7.
Nat Commun ; 10(1): 3913, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477714

RESUMEN

Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe2 and MoSe2. We demonstrate, with the support of ab-initio calculations, that layered InSe flakes sustain luminescent excitons with an intrinsic out-of-plane orientation, in contrast with the in-plane orientation of dipoles we find in two-dimensional WSe2 and MoSe2 at room-temperature. These results, combined with the high tunability of the optical response and outstanding transport properties, position layered InSe as a promising semiconductor for novel optoelectronic devices, in particular for hybrid integrated photonic chips which exploit the out-of-plane dipole orientation.

8.
Nanomaterials (Basel) ; 9(7)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336572

RESUMEN

The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators. In this work, we demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO2/Si substrates, which was also measured by atomic force microscopy. Optical contrast of hBN on SiO2/Si substrates exhibits a linear trend with the number of hBN monolayers in the few-layer thickness range. We also used bandpass filters (500-650 nm) to improve the effectiveness of the optical contrast methods for thickness estimations. We also investigated the thickness dependence of the high frequency in-plane E2g phonon mode of atomically thin hBN on SiO2/Si substrates by micro-Raman spectroscopy, which exhibits a weak thickness-dependence attributable to the in-plane vibration character of this mode. Ab initio calculations of the Raman active phonon modes of atomically thin free-standing crystals support these results, even if the substrate can reduce the frequency shift of the E2g phonon mode by reducing the hBN thickness. Therefore, the optical contrast method arises as the most suitable and fast technique to estimate the thickness of hBN nanosheets.

9.
Phys Rev Lett ; 122(18): 187401, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144865

RESUMEN

We present an ab initio method to calculate phonon-assisted absorption and emission spectra in the presence of strong excitonic effects. We apply the method to bulk hexagonal BN, which has an indirect band gap and is known for its strong luminescence in the UV range. We first analyze the excitons at the wave vector q[over ¯] of the indirect gap. The coupling of these excitons with the various phonon modes at q[over ¯] is expressed in terms of a product of the mean square displacement of the atoms and the second derivative of the optical response function with respect to atomic displacement along the phonon eigenvectors. The derivatives are calculated numerically with a finite difference scheme in a supercell commensurate with q[over ¯]. We use detailed balance arguments to obtain the intensity ratio between emission and absorption processes. Our results explain recent luminescence experiments and reveal the exciton-phonon coupling channels responsible for the emission lines.

10.
Nano Lett ; 18(11): 6882-6891, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30264571

RESUMEN

In monolayer (1L) transition metal dichalcogenides (TMDs) the valence and conduction bands are spin-split because of the strong spin-orbit interaction. In tungsten-based TMDs the spin-ordering of the conduction band is such that the so-called dark excitons, consisting of electrons and holes with opposite spin orientation, have lower energy than A excitons. The transition from bright to dark excitons involves the scattering of electrons from the upper to the lower conduction band at the K point of the Brillouin zone, with detrimental effects for the optoelectronic response of 1L-TMDs, since this reduces their light emission efficiency. Here, we exploit the valley selective optical selection rules and use two-color helicity-resolved pump-probe spectroscopy to directly measure the intravalley spin-flip relaxation dynamics in 1L-WS2. This occurs on a sub-ps time scale, and it is significantly dependent on temperature, indicative of phonon-assisted relaxation. Time-dependent ab initio calculations show that intravalley spin-flip scattering occurs on significantly longer time scales only at the K point, while the occupation of states away from the minimum of the conduction band significantly reduces the scattering time. Our results shed light on the scattering processes determining the light emission efficiency in optoelectronic and photonic devices based on 1L-TMDs.

11.
Nano Lett ; 17(8): 4549-4555, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28692278

RESUMEN

In single-layer WSe2, a paradigmatic semiconducting transition metal dichalcogenide, a circularly polarized laser field can selectively excite electronic transitions in one of the inequivalent K± valleys. Such selective valley population corresponds to a pseudospin polarization. This can be used as a degree of freedom in a "valleytronic" device provided that the time scale for its depolarization is sufficiently large. Yet, the mechanism behind the valley depolarization still remains heavily debated. Recent time-dependent Kerr experiments have provided an accurate way to visualize the valley dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized pump pulse. We present here a clear, accurate and parameter-free description of the valley dynamics. By using an atomistic, ab initio approach, we fully disclose the elemental mechanisms that dictate the depolarization effects. Our results are in excellent agreement with recent time-dependent Kerr experiments. We explain the Kerr dynamics and its temperature dependence in terms of electron-phonon-mediated processes that induce spin-flip intervalley transitions.

12.
Nano Lett ; 17(4): 2381-2388, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28199122

RESUMEN

We present a combined experimental and theoretical study of resonant Raman spectroscopy in single- and triple-layer MoTe2. Raman intensities are computed entirely from first-principles by calculating finite differences of the dielectric susceptibility. In our analysis, we investigate the role of quantum interference effects and the electron-phonon coupling. With this method, we explain the experimentally observed intensity inversion of the A1' vibrational modes in triple-layer MoTe2 with increasing laser photon energy. Finally, we show that a quantitative comparison with experimental data requires the proper inclusion of excitonic effects.

13.
Nano Lett ; 15(10): 6481-9, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26371970

RESUMEN

N-layer transition metal dichalcogenides provide a unique platform to investigate the evolution of the physical properties between the bulk (three-dimensional) and monolayer (quasi-two-dimensional) limits. Here, using high-resolution micro-Raman spectroscopy, we report a unified experimental description of the Γ-point optical phonons in N-layer 2H-molybdenum ditelluride (MoTe2). We observe series of N-dependent low-frequency interlayer shear and breathing modes (below 40 cm(-1), denoted LSM and LBM) and well-defined Davydov splittings of the mid-frequency modes (in the range 100-200 cm(-1), denoted iX and oX), which solely involve displacements of the chalcogen atoms. In contrast, the high-frequency modes (in the range 200-300 cm(-1), denoted iMX and oMX), arising from displacements of both the metal and chalcogen atoms, exhibit considerably reduced splittings. The manifold of phonon modes associated with the in-plane and out-of-plane displacements are quantitatively described by a force constant model, including interactions up to the second nearest neighbor and surface effects as fitting parameters. The splittings for the iX and oX modes observed in N-layer crystals are directly correlated to the corresponding bulk Davydov splittings between the E2u/E1g and B1u/A1g modes, respectively, and provide a measurement of the frequencies of the bulk silent E2u and B1u optical phonon modes. Our analysis could readily be generalized to other layered crystals.

14.
Nano Lett ; 12(11): 5829-34, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23030721

RESUMEN

Theoretically core-multishell nanowires under a cross-section of hexagonal geometry should exhibit peculiar confinement effects. Using a hard X-ray nanobeam, here we show experimental evidence for carrier localization phenomena at the hexagon corners by combining synchrotron excited optical luminescence with simultaneous X-ray fluorescence spectroscopy. Applied to single coaxial n-GaN/InGaN multiquantum-well/p-GaN nanowires, our experiment narrows the gap between optical microscopy and high-resolution X-ray imaging and calls for further studies on the underlying mechanisms of optoelectronic nanodevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...