Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(5): 445-456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433044

RESUMEN

TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.


Asunto(s)
Glicoproteínas de Membrana , Receptor trkB , Humanos , Receptor trkB/metabolismo , Receptor trkB/química , Animales , Dominios Proteicos , Transducción de Señal , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/química , Antidepresivos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/química
2.
J Neurosci ; 43(45): 7472-7482, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940583

RESUMEN

Serotonergic psychedelics, such as psilocybin and LSD, have garnered significant attention in recent years for their potential therapeutic effects and unique mechanisms of action. These compounds exert their primary effects through activating serotonin 5-HT2A receptors, found predominantly in cortical regions. By interacting with these receptors, serotonergic psychedelics induce alterations in perception, cognition, and emotions, leading to the characteristic psychedelic experience. One of the most crucial aspects of serotonergic psychedelics is their ability to promote neuroplasticity, the formation of new neural connections, and rewire neuronal networks. This neuroplasticity is believed to underlie their therapeutic potential for various mental health conditions, including depression, anxiety, and substance use disorders. In this mini-review, we will discuss how the 5-HT2A receptor activation is just one facet of the complex mechanisms of action of serotonergic psychedelics. They also interact with other serotonin receptor subtypes, such as 5-HT1A and 5-HT2C receptors, and with neurotrophin receptors (e.g., tropomyosin receptor kinase B). These interactions contribute to the complexity of their effects on perception, mood, and cognition. Moreover, as psychedelic research advances, there is an increasing interest in developing nonhallucinogenic derivatives of these drugs to create safer and more targeted medications for psychiatric disorders by removing the hallucinogenic properties while retaining the potential therapeutic benefits. These nonhallucinogenic derivatives would offer patients therapeutic advantages without the intense psychedelic experience, potentially reducing the risks of adverse reactions. Finally, we discuss the potential of psychedelics as substrates for post-translational modification of proteins as part of their mechanism of action.


Asunto(s)
Alucinógenos , Humanos , Alucinógenos/farmacología , Serotonina , Receptor de Serotonina 5-HT2A , Psilocibina , Ansiedad
3.
Nat Neurosci ; 26(6): 1032-1041, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280397

RESUMEN

Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.


Asunto(s)
Antidepresivos , Alucinógenos , Dietilamida del Ácido Lisérgico , Psilocibina , Receptor trkB , Alucinógenos/metabolismo , Humanos , Células HEK293 , Sitios de Unión , Simulación de Dinámica Molecular , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transducción de Señal , Receptor trkB/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Antidepresivos/metabolismo , Regulación Alostérica , Masculino , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Embrión de Mamíferos/citología , Neuronas/efectos de los fármacos , Dietilamida del Ácido Lisérgico/química , Dietilamida del Ácido Lisérgico/metabolismo , Dietilamida del Ácido Lisérgico/farmacología , Psilocibina/química , Psilocibina/metabolismo , Psilocibina/farmacología
4.
Eur J Neurosci ; 57(8): 1215-1224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36876503

RESUMEN

Brain derived neurotrophic factor (BDNF) and its receptor tropomyosin kinase receptor B (TRKB) are key regulators of activity-dependent plasticity in the brain. TRKB is the target for both slow- and rapid-acting antidepressants and BDNF-TRKB system mediates the plasticity-inducing effects of antidepressants through their downstream targets. Particularly, the protein complexes that regulate the trafficking and synapse recruitment of TRKB receptors might be crucial in this process. In the present study, we investigated the interaction of TRKB with the postsynaptic density protein 95 (PSD95). We found that antidepressants increase the TRKB:PSD95 interaction in adult mouse hippocampus. Fluoxetine, a slow-acting antidepressant, increases this interaction only after a long-term (7 days) treatment, while (2R,6R)-hydroxynorketamine (RHNK), an active metabolite of rapid-acting antidepressant ketamine, achieves this within a short treatment regimen (3 days). Moreover, the drug-induced changes of TRKB:PSD95 interaction correlate with drug latency in behaviour, observed in mice subjected to an object location memory test (OLM). While silencing of PSD95 by viral delivery of shRNA in hippocampus abolished the RHNK-induced plasticity in mice in OLM, overexpression of PSD95 shortened the fluoxetine latency. In summary, changes in the TRKB:PSD95 interaction contribute to differences observed in drug latency. This study sheds a light on a novel mechanism of action of different classes of antidepressants.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Fluoxetina , Animales , Ratones , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Receptor trkB/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
5.
Front Synaptic Neurosci ; 13: 672475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366821

RESUMEN

Perineuronal nets (PNNs) have an important physiological role in the retention of learning by restricting cognitive flexibility. Their deposition peaks after developmental periods of intensive learning, usually in late childhood, and they help in long-term preservation of newly acquired skills and information. Modulation of PNN function by various techniques enhances plasticity and regulates the retention of memories, which may be beneficial when memory persistence entails negative symptoms such as post-traumatic stress disorder (PTSD). In this study, we investigated the role of PTPσ [receptor-type tyrosine-protein phosphatase S, a phosphatase that is activated by binding of chondroitin sulfate proteoglycans (CSPGs) from PNNs] in retention of memories using Novel Object Recognition and Fear Conditioning models. We observed that mice haploinsufficient for PTPRS gene (PTPσ+/-), although having improved short-term object recognition memory, display impaired long-term memory in both Novel Object Recognition and Fear Conditioning paradigm, as compared to WT littermates. However, PTPσ+/- mice did not show any differences in behavioral tests that do not heavily rely on cognitive flexibility, such as Elevated Plus Maze, Open Field, Marble Burying, and Forced Swimming Test. Since PTPσ has been shown to interact with and dephosphorylate TRKB, we investigated activation of this receptor and its downstream pathways in limbic areas known to be associated with memory. We found that phosphorylation of TRKB and PLCγ are increased in the hippocampus, prefrontal cortex, and amygdaloid complex of PTPσ+/- mice, but other TRKB-mediated signaling pathways are not affected. Our data suggest that PTPσ downregulation promotes TRKB phosphorylation in different brain areas, improves short-term memory performance but disrupts long-term memory retention in the tested animal models. Inhibition of PTPσ or disruption of PNN-PTPσ-TRKB complex might be a potential target for disorders where negative modulation of the acquired memories can be beneficial.

6.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33606976

RESUMEN

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Asunto(s)
Antidepresivos/farmacología , Receptor trkB/metabolismo , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Embrión de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Receptor trkB/química , Corteza Visual/metabolismo
7.
J Biol Chem ; 294(48): 18150-18161, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31631060

RESUMEN

Several antidepressant drugs activate tropomyosin-related kinase B (TRKB) receptor, but it remains unclear whether these compounds employ a common mechanism for TRKB activation. Here, using MS, we found that a single intraperitoneal injection of fluoxetine disrupts the interaction of several proteins with TRKB in the hippocampus of mice. These proteins included members of adaptor protein complex-2 (AP-2) involved in vesicular endocytosis. The interaction of TRKB with the cargo-docking µ subunit of the AP-2 complex (AP2M) was confirmed to be disrupted by both acute and repeated fluoxetine treatments. Of note, fluoxetine disrupted the coupling between full-length TRKB and AP2M, but not the interaction between AP2M and the TRKB C-terminal region, indicating that the fluoxetine-binding site in TRKB lies outside the TRKB:AP2M interface. ELISA experiments revealed that in addition to fluoxetine, other chemically diverse antidepressants, such as imipramine, rolipram, phenelzine, ketamine, and its metabolite 2R,6R-hydroxynorketamine, also decreased the interaction between TRKB and AP2M in vitro Silencing the expression of AP2M in a TRKB-expressing mouse fibroblast cell line (MG87.TRKB) increased cell-surface expression of TRKB and facilitated its activation by brain-derived neurotrophic factor (BDNF), observed as levels of phosphorylated TRKB. Moreover, animals haploinsufficient for the Ap2m1 gene displayed increased levels of active TRKB, along with enhanced cell-surface expression of the receptor in cultured hippocampal neurons. Taken together, our results suggest that disruption of the TRKB:AP2M interaction is a common mechanism underlying TRKB activation by several chemically diverse antidepressants.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Antidepresivos/farmacología , Endocitosis/efectos de los fármacos , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Fibroblastos/metabolismo , Masculino , Ratones
8.
Materials (Basel) ; 10(9)2017 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-28926984

RESUMEN

Durability and limited catalytic activity are key impediments to the commercialization of polymer electrolyte fuel cells. Carbon materials employed as catalyst support can be doped with different heteroatoms, like nitrogen, to improve both catalytic activity and durability. Carbon xerogels are nanoporous carbons that can be easily synthesized in order to obtain N-doped materials. In the present work, we introduced melamine as a carbon xerogel precursor together with resorcinol for an effective in-situ N doping (3-4 wt % N). Pt nanoparticles were supported on nitrogen-doped carbon xerogels and their activity for the oxygen reduction reaction (ORR) was evaluated in acid media along with their stability. Results provide new evidences of the type of N groups aiding the activity of Pt for the ORR and of a remarkable stability for N-doped carbon-supported Pt catalysts, providing appropriate physico-chemical features.

9.
Nanomaterials (Basel) ; 6(10)2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28335315

RESUMEN

In this work, palladium-nickel nanoparticles supported on carbon nanofibers were synthesized, with metal contents close to 25 wt % and Pd:Ni atomic ratios near to 1:2. These catalysts were previously studied in order to determine their activity toward the oxygen reduction reaction. Before the deposition of metals, the carbon nanofibers were chemically treated in order to generate oxygen and nitrogen groups on their surface. Transmission electron microscopy analysis (TEM) images revealed particle diameters between 3 and 4 nm, overcoming the sizes observed for the nanoparticles supported on carbon black (catalyst Pd-Ni CB 1:2). From the CO oxidation at different temperatures, the activation energy Eact for this reaction was determined. These values indicated a high tolerance of the catalysts toward the CO poisoning, especially in the case of the catalysts supported on the non-chemically treated carbon nanofibers. On the other hand, apparent activation energy Eap for the methanol oxidation was also determined finding-as a rate determining step-the COads diffusion to the OHads for the catalysts supported on carbon nanofibers. The results here presented showed that the surface functional groups only play a role in the obtaining of lower particle sizes, which is an important factor in the obtaining of low CO oxidation activation energies.

10.
Environ Sci Technol ; 39(17): 6871-6, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16190251

RESUMEN

On-site production of hydrogen and carbon nanofibers by thermocatalytic decomposition (TCD) of mineral oil waste (MWO) is analyzed. An experimental study carried out at lab scale to estimate the yields that can be expected from TCD of the MWO collected in the Aragon area is presented. Based on these results, mass and energy balance have been carried out to have a preliminary estimation on the products that could be obtained by processing the 10 000 tonnes/year of MWO that can be collected in the Aragon region. The process would consist of four steps: (1) drying, (2) vaporization, (3) primary decomposition, and (4) catalytic decomposition. After drying and vaporization, MWO is converted in step 3 into fuel grade carbon and a gas mixture that mainly contains hydrogen and methane. Methane is partially converted in step 4 into hydrogen and a carbon material that contains carbon nanofibers which could be used to manufacture utilities with high added value. The 10 000 tonnes/year of MWO would yield 705 t/y of H2, 4962 t/y of fuel grade carbon, and 1016 t/y of pure carbon. The mixture obtained (71% H2: 23% CH4) could be used as a hydrogen source to obtain pure hydrogen or hydrogen-natural gas mixtures to fuel a captive fleet of public urban vehicles powered by fuel cells or dedicated ICE, respectively.


Asunto(s)
Carbono/química , Hidrógeno/química , Aceite Mineral/metabolismo , Eliminación de Residuos Líquidos/métodos , Fibra de Carbono , Catálisis , Conservación de los Recursos Energéticos , Metano/química , Aceite Mineral/química , Nanoestructuras , España , Temperatura , Eliminación de Residuos Líquidos/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...