Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 80(22): 5098-5108, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32958546

RESUMEN

Although lower grade gliomas are driven by mutations in the isocitrate dehydrogenase 1 (IDH1) gene and are less aggressive than primary glioblastoma, they nonetheless generally recur. IDH1-mutant patients are increasingly being treated with temozolomide, but early detection of response remains a challenge and there is a need for complementary imaging methods to assess response to therapy prior to tumor shrinkage. The goal of this study was to determine the value of magnetic resonance spectroscopy (MRS)-based metabolic changes for detection of response to temozolomide in both genetically engineered and patient-derived mutant IDH1 models. Using 1H MRS in combination with chemometrics identified several metabolic alterations in temozolomide-treated cells, including a significant increase in steady-state glutamate levels. This was confirmed in vivo, where the observed 1H MRS increase in glutamate/glutamine occurred prior to tumor shrinkage. Cells labeled with [1-13C]glucose and [3-13C]glutamine, the principal sources of cellular glutamate, showed that flux to glutamate both from glucose via the tricarboxylic acid cycle and from glutamine were increased following temozolomide treatment. In line with these results, hyperpolarized [5-13C]glutamate produced from [2-13C]pyruvate and hyperpolarized [1-13C]glutamate produced from [1-13C]α-ketoglutarate were significantly higher in temozolomide-treated cells compared with controls. Collectively, our findings identify 1H MRS-detectable elevation of glutamate and hyperpolarized 13C MRS-detectable glutamate production from either pyruvate or α-ketoglutarate as potential translatable metabolic biomarkers of response to temozolomide treatment in mutant IDH1 glioma. SIGNIFICANCE: These findings show that glutamate can be used as a noninvasive, imageable metabolic marker for early assessment of tumor response to temozolomide, with the potential to improve treatment strategies for mutant IDH1 patients.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Ácido Glutámico/metabolismo , Isocitrato Deshidrogenasa/genética , Temozolomida/uso terapéutico , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Isótopos de Carbono , Femenino , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Ratones , Ratones Desnudos , Mutación , Ingeniería de Proteínas , Ácido Pirúvico/metabolismo , Distribución Aleatoria , Resultado del Tratamiento
2.
Theranostics ; 10(19): 8757-8770, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754276

RESUMEN

Mutations in isocitrate dehydrogenase 1 (IDH1mut) are reported in 70-90% of low-grade gliomas and secondary glioblastomas. IDH1mut catalyzes the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), an oncometabolite which drives tumorigenesis. Inhibition of IDH1mut is therefore an emerging therapeutic approach, and inhibitors such as AG-120 and AG-881 have shown promising results in phase 1 and 2 clinical studies. However, detection of response to these therapies prior to changes in tumor growth can be challenging. The goal of this study was to identify non-invasive clinically translatable metabolic imaging biomarkers of IDH1mut inhibition that can serve to assess response. Methods: IDH1mut inhibition was confirmed using an enzyme assay and 1H- and 13C- magnetic resonance spectroscopy (MRS) were used to investigate the metabolic effects of AG-120 and AG-881 on two genetically engineered IDH1mut-expressing cell lines, NHAIDH1mut and U87IDH1mut. Results:1H-MRS indicated a significant decrease in steady-state 2-HG following treatment, as expected. This was accompanied by a significant 1H-MRS-detectable increase in glutamate. However, other metabolites previously linked to 2-HG were not altered. 13C-MRS also showed that the steady-state changes in glutamate were associated with a modulation in the flux of glutamine to both glutamate and 2-HG. Finally, hyperpolarized 13C-MRS was used to show that the flux of α-KG to both glutamate and 2-HG was modulated by treatment. Conclusion: In this study, we identified potential 1H- and 13C-MRS-detectable biomarkers of response to IDH1mut inhibition in gliomas. Although further studies are needed to evaluate the utility of these biomarkers in vivo, we expect that in addition to a 1H-MRS-detectable drop in 2-HG, a 1H-MRS-detectable increase in glutamate, as well as a hyperpolarized 13C-MRS-detectable change in [1-13C] α-KG flux, could serve as metabolic imaging biomarkers of response to treatment.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Diaminas/farmacología , Glioma/tratamiento farmacológico , Glioma/genética , Ácido Glutámico/metabolismo , Glutaratos/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Mutación , Espectroscopía de Protones por Resonancia Magnética , Piridinas/farmacología
3.
Sci Rep ; 9(1): 10521, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324855

RESUMEN

70-90% of low-grade gliomas and secondary glioblastomas are characterized by mutations in isocitrate dehydrogenase 1 (IDHmut). IDHmut produces the oncometabolite 2-hydroxyglutarate (2HG), which drives tumorigenesis in these tumors. The phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway represents an attractive therapeutic target for IDHmut gliomas, but noninvasive indicators of drug target modulation are lacking. The goal of this study was therefore to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers associated with IDHmut glioma response to the dual PI3K/(mTOR) inhibitor XL765. 1H-MRS of two cell lines genetically modified to express IDHmut showed that XL765 induced a significant reduction in several intracellular metabolites including 2HG. Importantly, examination of an orthotopic IDHmut tumor model showed that enhanced animal survival following XL765 treatment was associated with a significant in vivo 1H-MRS detectable reduction in 2HG but not with significant inhibition in tumor growth. Further validation is required, but our results indicate that 2HG could serve as a potential noninvasive MRS-detectable metabolic biomarker of IDHmut glioma response to PI3K/mTOR inhibition.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/genética , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Astrocitos/metabolismo , Neoplasias Encefálicas/mortalidad , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Transformada , Glioma/mortalidad , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Estimación de Kaplan-Meier , Ratones , Proteínas de Neoplasias/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Procesamiento Proteico-Postraduccional , Quinoxalinas/farmacología , Quinoxalinas/uso terapéutico , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA