Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 19(1): 17, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000778

RESUMEN

BACKGROUND: Citric acid, a commodity product of industrial biotechnology, is produced by fermentation of the filamentous fungus Aspergillus niger. A requirement for high-yield citric acid production is keeping the concentration of Mn2+ ions in the medium at or below 5 µg L-1. Understanding manganese metabolism in A. niger is therefore of critical importance to citric acid production. To this end, we investigated transport of Mn2+ ions in A. niger NRRL2270. RESULTS: we identified an A. niger gene (dmtA; NRRL3_07789), predicted to encode a transmembrane protein, with high sequence identity to the yeast manganese transporters Smf1p and Smf2p. Deletion of dmtA in A. niger eliminated the intake of Mn2+ at low (5 µg L-1) external Mn2+ concentration, and reduced the intake of Mn2+ at high (> 100 µg L-1) external Mn2+ concentration. Compared to the parent strain, overexpression of dmtA increased Mn2+ intake at both low and high external Mn2+ concentrations. Cultivation of the parent strain under Mn2+ ions limitation conditions (5 µg L-1) reduced germination and led to the formation of stubby, swollen hyphae that formed compact pellets. Deletion of dmtA caused defects in germination and hyphal morphology even in the presence of 100 µg L-1 Mn2+, while overexpression of dmtA led to enhanced germination and normal hyphal morphology at limiting Mn2+ concentration. Growth of both the parent and the deletion strains under citric acid producing conditions resulted in molar yields (Yp/s) of citric acid of > 0.8, although the deletion strain produced ~ 30% less biomass. This yield was reduced only by 20% in the presence of 100 µg L-1 Mn2+, whereas production by the parent strain was reduced by 60%. The Yp/s of the overexpressing strain was 17% of that of the parent strain, irrespective of the concentrations of external Mn2+. CONCLUSIONS: Our results demonstrate that dmtA is physiologically important in the transport of Mn2+ ions in A. niger, and manipulation of its expression modulates citric acid overflow.


Asunto(s)
Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Proteínas Fúngicas/fisiología , Manganeso/metabolismo , Metiltransferasas/fisiología , Biotecnología/métodos , Fermentación , Proteínas Fúngicas/genética , Mutación con Pérdida de Función , Metiltransferasas/genética
2.
Front Microbiol ; 10: 1589, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338087

RESUMEN

Itaconic acid is used as a bio-based, renewable building block in the polymer industry. It is produced by submerged fermentations of the filamentous fungus Aspergillus terreus from molasses or starch, but research over the efficient utilization of non-food, lignocellulosic plant biomass is soaring. The objective of this study was to test whether the application of two key cultivation parameters for obtaining itaconic acid from D-glucose in high yields - Mn2+ ion deficiency and high concentration of the carbon source - would also occur on D-xylose, the principal monomer of lignocellulose. To this end, a carbon and energy balance for itaconic acid formation was established, which is 0.83 moles/mole D-xylose. The effect of Mn2+ ions on itaconic acid formation was indeed similar to that on D-glucose and maximal yields were obtained below 3 µg L-1 Mn2+ ions, which were, however, only 0.63 moles of itaconic acid per mole D-xylose. In contrast to the case on D-glucose, increasing D-xylose concentration over 50 g L-1 did not change the above yield. By-products such as xylitol and α-ketoglutarate were found, but in total they remained below 2% of the concentration of D-xylose. Mass balance of the fermentation with 110 g L-1 D-xylose revealed that >95% of the carbon from D-xylose was accounted as biomass, itaconic acid, and the carbon dioxide released in the last step of itaconic acid biosynthesis. Our data show that the efficiency of biomass formation is the critical parameter for itaconic acid yield from D-xylose under otherwise optimal conditions.

3.
Appl Microbiol Biotechnol ; 102(20): 8799-8808, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30141084

RESUMEN

Itaconic acid is a five-carbon dicarboxylic acid with an unsaturated alkene bond, frequently used as a building block for the industrial production of a variety of synthetic polymers. It is also one of the major products of fungal "overflow metabolism" which can be produced in submerged fermentations of the filamentous fungus Aspergillus terreus. At the present, molar yields of itaconate are lower than those obtained in citric acid production in Aspergillus niger. Here, we have studied the possibility that the yield may be limited by the oxygen supply during fermentation and hence tested the effect of the dissolved oxygen concentration on the itaconic acid formation rate and yield in lab-scale bioreactors. The data show that a dissolved oxygen concentration of 2% saturation was sufficient for maximal biomass formation. Raising it to 30% saturation had no effect on biomass formation or the growth rate, but the itaconate yield augmented substantially from 0.53 to 0.85 mol itaconate/mol glucose. Furthermore, the volumetric and specific rates of itaconic acid formation ameliorated by as much as 150% concurrent with faster glucose consumption, shortening the fermentation time by 48 h. Further increasing the dissolved oxygen concentration over 30% saturation had no effect. Moreover, we show that this increase in itaconic acid production coincides with an increase in alternative respiration, circumventing the formation of surplus ATP by the cytochrome electron transport chain, as well as with increased levels of alternative oxidase transcript. We conclude that high(er) itaconic acid accumulation requires a dissolved oxygen concentration that is much higher than that needed for maximal biomass formation, and postulate that the induction of alternative respiration allows the necessary NADH reoxidation ratio without surplus ATP production to increase the glucose consumption and the flux through overflow metabolism.


Asunto(s)
Aspergillus niger/enzimología , Aspergillus niger/metabolismo , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Succinatos/metabolismo , Adenosina Trifosfato/metabolismo , Aspergillus niger/genética , Aspergillus niger/crecimiento & desarrollo , Biomasa , Reactores Biológicos/microbiología , Ácido Cítrico/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Mitocondriales/genética , Oxidorreductasas/genética , Oxígeno/análisis , Proteínas de Plantas/genética
4.
Toxins (Basel) ; 10(4)2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29677138

RESUMEN

Aspergillus nidulans has one gene for alternative oxidase (EC 1.10.3.11). To investigate the relationship between this mitochondrial terminal oxidase and the formation of the mycotoxin sterigmatocystin, the encoding aodA gene was both deleted and overexpressed. Relative to the wild-type, the cyanide-resistant fraction of respiration in the late stationary stage—when sterigmatocystin production occurs—doubled in the overexpressing mutant carrying three aodA gene copies, but decreased to 10% in the deletant. Essentially identical results were obtained regardless whether the cultures were illuminated or protected from light. In contrast, sterigmatocystin yield in the aodA deletant was about half of that in the control when grown in the dark, while aodA overexpression resulted in up to 70% more sterigmatocystin formed, the yield increasing with alternative oxidase activity. Results were quite different when cultures were illuminated: under those conditions, sterigmatocystin volumetric yields were considerably lower, and statistically unvarying, regardless of the presence, absence, or the copy number of aodA. We conclude that the copy number of aodA, and hence, the balance between alternative- and cytochrome C-mediated respiration, appears to correlate with sterigmatocystin production in A. nidulans, albeit only in the absence of light.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Oxidorreductasas/metabolismo , Esterigmatocistina/biosíntesis , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Oxidorreductasas/genética
5.
Toxins (Basel) ; 8(12)2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27916804

RESUMEN

Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST) produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L-1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis.


Asunto(s)
Aspergillus nidulans/metabolismo , Lactosa/metabolismo , Esterigmatocistina/biosíntesis , Aspergillus nidulans/crecimiento & desarrollo , Glucosa/metabolismo
6.
J Antibiot (Tokyo) ; 67(7): 489-97, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24690910

RESUMEN

Penicillium chrysogenum is used as an industrial producer of penicillin. We investigated its catabolism of lactose, an abundant component of whey used in penicillin fermentation, comparing the type strain NRRL 1951 with the high producing strain AS-P-78. Both strains grew similarly on lactose as the sole carbon source under batch conditions, exhibiting almost identical time profiles of sugar depletion. In silico analysis of the genome sequences revealed that P. chrysogenum features at least five putative ß-galactosidase (bGal)-encoding genes at the annotated loci Pc22g14540, Pc12g11750, Pc16g12750, Pc14g01510 and Pc06g00600. The first two proteins appear to be orthologs of two Aspergillus nidulans family 2 intracellular glycosyl hydrolases expressed on lactose. The latter three P. chrysogenum proteins appear to be distinct paralogs of the extracellular bGal from A. niger, LacA, a family 35 glycosyl hydrolase. The P. chrysogenum genome also specifies two putative lactose transporter genes at the annotated loci Pc16g06850 and Pc13g08630. These are orthologs of paralogs of the gene encoding the high-affinity lactose permease (lacpA) in A. nidulans for which P. chrysogenum appears to lack the ortholog. Transcript analysis of Pc22g14540 showed that it was expressed exclusively on lactose, whereas Pc12g11750 was weakly expressed on all carbon sources tested, including D-glucose. Pc16g12750 was co-expressed with the two putative intracellular bGal genes on lactose and also responded on L-arabinose. The Pc13g08630 transcript was formed exclusively on lactose. The data strongly suggest that P. chrysogenum exhibits a dual assimilation strategy for lactose, simultaneously employing extracellular and intracellular hydrolysis, without any correlation to the penicillin-producing potential of the studied strains.


Asunto(s)
Hidrolasas/genética , Lactosa/metabolismo , Proteínas de Transporte de Membrana/genética , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Arabinosa/genética , Arabinosa/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrolasas/metabolismo , Lactosa/genética , Proteínas de Transporte de Membrana/metabolismo , Metabolismo , Penicilinas/metabolismo , Penicillium chrysogenum/enzimología , Filogenia , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA