Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(10): 2030-2043, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732905

RESUMEN

The tumor-specific chromosomal translocation product, PAX3::FOXO1, is an aberrant fusion protein that plays a key role for oncogenesis in the alveolar subtype of rhabdomyosarcoma (RMS). PAX3::FOXO1 represents a validated molecular target for alveolar RMS and successful inhibition of its oncogenic activity is likely to have significant clinical applications. Even though several PAX3::FOXO1 function-based screening studies have been successfully completed, a directly binding small-molecule inhibitor of PAX3::FOXO1 has not been reported. Therefore, we screened small-molecule libraries to identify compounds that were capable of directly binding to PAX3::FOXO1 protein using surface plasmon resonance technology. Compounds that directly bound to PAX3::FOXO1 were further evaluated in secondary transcriptional activation assays. We discovered that piperacetazine can directly bind to PAX3::FOXO1 protein and inhibit fusion protein-derived transcription in multiple alveolar RMS cell lines. Piperacetazine inhibited anchorage-independent growth of fusion-positive alveolar RMS cells but not embryonal RMS cells. On the basis of our findings, piperacetazine is a molecular scaffold upon which derivatives could be developed as specific inhibitors of PAX3::FOXO1. These novel inhibitors could potentially be evaluated in future clinical trials for recurrent or metastatic alveolar RMS as novel targeted therapy options. SIGNIFICANCE: RMS is a malignant soft-tissue tumor mainly affecting the pediatric population. A subgroup of RMS with worse prognosis harbors a unique chromosomal translocation creating an oncogenic fusion protein, PAX3::FOXO1. We identified piperacetazine as a direct inhibitor of PAX3::FOXO1, which may provide a scaffold for designing RMS-specific targeted therapy.


Asunto(s)
Rabdomiosarcoma Alveolar , Rabdomiosarcoma , Humanos , Proteína Forkhead Box O1/genética , Factores de Transcripción Paired Box/genética , Factor de Transcripción PAX3/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma Alveolar/genética , Translocación Genética
2.
Eur J Med Chem ; 251: 115244, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36917882

RESUMEN

Ewing Sarcoma (ES) is a cancer of bone and soft tissues affecting mostly children and young adults. Aggressive progression and poor prognosis of this malignancy call for novel and targeted treatments. CD99 is a transmembrane protein that is abundantly expressed on ES cells and is a diagnostic marker for the disease. ES cells are selectively sensitive to CD99 inhibition compared to most normal cells and other tumors. Therefore, CD99 is a good molecular target for ES treatment. Clofarabine and cladribine are two FDA approved drugs that are administered for their inhibitory acts on DNA synthesis to treat relapsed or refractory acute lymphoblastic and myeloid leukemia. They have also been shown to directly bind to CD99 and inhibit ES growth through a distinct mechanism. In the current study, we designed, synthesized and tested new ES specific derivatives of both drugs that would continue to target CD99 but with expected reduction in cellular membrane permeability and rendered unsuitable for inhibiting DNA synthesis. By using commercially available clofarabine and cladribine purine nucleoside analogs, we modified the primary alcohol moiety at the deoxyribose C-5' terminal site to suppress phosphorylation and thus inhibition of subsequent DNA synthesis pathways. In addition, we incorporated a variety of polar groups in the ribose and purine rings to reduce membrane permeability and investigated the effects of configurational changes in the sugar moiety. Among 26 new derivatives, we identified two compounds, BK50164 and BK60106, that cause cell death specifically in ES primarily due to inhibition of CD99 but not via inhibition of DNA synthesis. These findings provide a road map for the future development selective CD99 inhibitors for targeted treatment of ES.


Asunto(s)
Sarcoma de Ewing , Niño , Humanos , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/genética , Moléculas de Adhesión Celular , Clofarabina/farmacología , Cladribina , ADN , Antígeno 12E7
3.
PLoS One ; 16(6): e0253170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34133426

RESUMEN

Clofarabine, an FDA approved purine analog, is used in the treatment of relapsed or refractory acute lymphoblastic leukemia. Clofarabine acts by inhibiting DNA synthesis. We demonstrated that clofarabine may have a novel function though inhibiting CD99, a transmembrane protein highly expressed on Ewing Sarcoma (ES) cells. CD99 is a validated target in ES whose inhibition may lead to a high therapeutic index for patients. Here we present additional data to support the hypothesis that clofarabine acts on CD99 and regulates key signaling pathways in ES. Cellular thermal shift assay indicated a direct interaction between clofarabine and CD99 in ES cell lysates. Clofarabine induced ES cell death does not require clofarabine's conversion to its active form by deoxycytidine kinase. A phosphokinase array screen with clofarabine and a CD99 blocking antibody identified alterations in signaling pathways. CD99 inhibition with clofarabine in ES cells caused rapid and sustained phosphorylation of ERK, MSK, and CREB. However, activation of this pathway did not correlate with clofarabine induced ES cell death. In summary, we demonstrated that clofarabine may activate ERK, MSK, and CREB phosphorylation through CD99 within minutes, however this paradoxical activation and subsequent ES cell death requires additional investigation.


Asunto(s)
Antígeno 12E7/antagonistas & inhibidores , Antimetabolitos Antineoplásicos/farmacología , Proteína de Unión a CREB/metabolismo , Clofarabina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sarcoma de Ewing/metabolismo , Transducción de Señal/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Humanos , Fosforilación , Sarcoma de Ewing/tratamiento farmacológico
4.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904394

RESUMEN

Cortical interneurons establish inhibitory microcircuits throughout the neocortex and their dysfunction has been implicated in epilepsy and neuropsychiatric diseases. Developmentally, interneurons migrate from a distal progenitor domain in order to populate the neocortex - a process that occurs at a slower rate in humans than in mice. In this study, we sought to identify factors that regulate the rate of interneuron maturation across the two species. Using embryonic mouse development as a model system, we found that the process of initiating interneuron migration is regulated by blood vessels of the medial ganglionic eminence (MGE), an interneuron progenitor domain. We identified two endothelial cell-derived paracrine factors, SPARC and SerpinE1, that enhance interneuron migration in mouse MGE explants and organotypic cultures. Moreover, pre-treatment of human stem cell-derived interneurons (hSC-interneurons) with SPARC and SerpinE1 prior to transplantation into neonatal mouse cortex enhanced their migration and morphological elaboration in the host cortex. Further, SPARC and SerpinE1-treated hSC-interneurons also exhibited more mature electrophysiological characteristics compared to controls. Overall, our studies suggest a critical role for CNS vasculature in regulating interneuron developmental maturation in both mice and humans.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Corteza Cerebral/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Interneuronas/efectos de los fármacos , Eminencia Media/irrigación sanguínea , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Osteonectina/farmacología , Inhibidor 1 de Activador Plasminogénico/farmacología , Potenciales de Acción , Animales , Corteza Cerebral/embriología , Corteza Cerebral/cirugía , Células Endoteliales/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Interneuronas/metabolismo , Interneuronas/trasplante , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Eminencia Media/embriología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Neovascularización Fisiológica , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Osteonectina/metabolismo , Comunicación Paracrina , Inhibidor 1 de Activador Plasminogénico/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA