Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Respir Physiol Neurobiol ; 308: 103986, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36396028

RESUMEN

Identifying the deposition pattern of inhaled pharmaceutical aerosols in the human respiratory system and understanding the effective parameters in this process is vital for more efficient drug delivery to this region. This study investigated aerosol deposition in a patient-specific upper respiratory airway and determined the deposition fraction (DF) and pressure drop across the airway. An experimental setup was developed to measure the pressure drop in the same realistic geometry printed from the patient-specific geometry. The unsteady simulations were performed with a flow rate of 15 L/min and different particle diameters ranging from 2 to 30 µm. The results revealed significant flow circulation after the nasal valve in the upper and oropharynx regions, and a maximum local velocity observed in the nasopharynx. Transient cumulative deposition fraction showed that after 2 s of the simulation, all particles deposit or escape the computational domain. About 30 % of the injected large particles (dp ≥ 20 µm) deposited in the first 1 cm away from the nostril and more than 95 % deposited in the nasal airway before entering the oropharynx region. While almost 94 % deposition in trachea was composed of particles smaller than 5 µm. Approximately 20 % of inhaled fine particles (2-5 µm) deposited in the upper airway and the rest deposited in oropharynx, larynx and trachea.


Asunto(s)
Laringe , Tráquea , Humanos , Espiración , Tamaño de la Partícula , Administración por Inhalación , Aerosoles , Simulación por Computador , Modelos Biológicos
2.
Proc Inst Mech Eng H ; 236(7): 994-1008, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35575166

RESUMEN

Heart attack is one of the most common causes of death in the world. Coronary artery disease is the most recognized cause of heart attack whose onset and progression have been attributed to low-density lipoprotein (LDL) passing through the wall of the artery. In this paper, hemodynamic variables as well as the concentration of LDL through the coronary porous artery at the Left Anterior Descending coronary artery (LAD), and its first diagonal branch (D1) under the heart motion investigated using computational simulation. The geometry that has been studied in this paper is the first bifurcation of Left Anterior Descending (LAD) that has been placed on a perimeter of hypothetical sphere representative of the heart geometry. Sinusoidal variations of sphere radii, simulated pulsating movement of the heart. Blood has been considered as a Newtonian and incompressible flow with pulsatile flow rate and real physiological profile. The plasma filtration boundary condition used over the walls in order to simulate the concentration of LDL to a one-layer artery wall. Variations in the concentration of LDL on the artery wall and its relation to oscillation on shear stress on the artery wall under different conditions are presented. Moreover, the effects of the pulsating inlet flow and dynamic movement of the artery are explored. The results declared that minimum shear stress and maximum LDL concentration take place at the bifurcation and on the myocardial wall which is in complete agreement with clinical studies. Furthermore, it has been shown that the heart pulse has a slight effect on the average time of concentration (0.1% increase); however, by analyzing all time steps, one could observe that the maximum concentration rises in some time steps; where this increases the possibility of LDL presence and helps them diffuse inside the artery wall.


Asunto(s)
Vasos Coronarios , Infarto del Miocardio , Simulación por Computador , Vasos Coronarios/fisiología , Corazón/fisiología , Hemodinámica/fisiología , Humanos , Modelos Cardiovasculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...