Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Med Genet ; 61(3): 284-288, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37748860

RESUMEN

PURPOSE: Mosaic BRCA1 promoter methylation (BRCA1meth) increases the risk of early-onset breast cancer, triple-negative breast cancer and ovarian cancer. As mosaic BRCA1meth are believed to occur de novo, their role in family breast/ovarian cancer has not been assessed. PATIENTS: Blood-derived DNA from 20 unrelated affected cases from families with aggregation of breast/ovarian cancer, but with no germline pathogenic variants in BRCA1/2, PALB2 or RAD51C/D, were screened by methylation-sensitive high-resolution melting. CpG analysis was performed by pyrosequencing on blood and buccal swab. Two probands carried a pathogenic variant in a moderate-penetrance gene (ATM and BARD1), and 8 of 18 others (44%) carried BRCA1meth (vs none of the 20 age-matched controls). Involvement of BRCA1 in tumourigenesis in methylated probands was demonstrated in most tested cases by detection of a loss of heterozygosity and a homologous recombination deficiency signature. Among the eight methylated probands, two had relatives with breast cancer with detectable BRCA1meth in blood, including one with high methylation levels in two non-tumour tissues. CONCLUSIONS: The high prevalence of mosaic BRCA1meth in patients with breast/ovarian cancer with affected relatives, as well as this first description of a family aggregation of mosaic BRCA1meth, shows how this de novo event can contribute to hereditary breast/ovarian cancer pedigrees.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Humanos , Femenino , Proteína BRCA1/genética , Linaje , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Metilación , Neoplasias Ováricas/genética , Neoplasias Ováricas/diagnóstico , Mutación de Línea Germinal/genética , Predisposición Genética a la Enfermedad , Metilación de ADN/genética
2.
Breast ; 73: 103620, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096711

RESUMEN

Breast cancers (BC) are rare in men and are often caused by constitutional predisposing factors. In women, mosaic BRCA1 promoter methylations (MBPM) are frequent events, detected in 4-8% of healthy subjects. This constitutional epimutation increases risk of early-onset and triple-negative BC. However, the role of MBPM in male BC predisposition has never been assessed. We screened 40 blood samples from men affected by BC, and performed extensive tumour analysis on MBPM-positive patients. We detected two patients carrying MBPM. Surprisingly, tumour analysis revealed that neither of these two male BCs were caused by the constitutional BRCA1 epimutations carried by the patients.


Asunto(s)
Neoplasias de la Mama Masculina , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Masculino , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama Masculina/genética , Metilación de ADN , Proteína BRCA1/genética , Neoplasias de la Mama Triple Negativas/genética , Predisposición Genética a la Enfermedad
3.
Clin Genet ; 104(1): 107-113, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36974006

RESUMEN

In breast or ovarian cancer (BC/OC) patients with evocative personal and/or family history, multigene panel sequencing is performed on blood to diagnose hereditary predispositions. Additionally, BRCA1/BRCA2 testing can be performed on tumor sample for therapeutic purpose. The accuracy of multigene panel tumor analysis on BC/OC to detect predisposing germline pathogenic variants (gPV) has not been precisely assessed. By comparing sequencing data from blood and fresh-frozen tumor we show that tumor genomic instability causes pitfalls to consider when performing tumor testing to detect gPV. Even if loss of heterozygosity increases germline signal in most cases, somatic copy number variants (CNV) can mask germline CNV and collapse point gPV variant allele frequency (VAF). Moreover, VAF does not allow an accurate distinction between germline and somatic pathogenic variants.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Femenino , Humanos , Predisposición Genética a la Enfermedad , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Genes BRCA2 , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Mutación de Línea Germinal/genética
4.
J Med Genet ; 60(5): 460-463, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36270768

RESUMEN

APC germline pathogenic variants result in predisposition to familial adenomatous polyposis and extraintestinal tumours such as desmoid fibromatosis, medulloblastomas and thyroid cancers. They have also been recently involved in ovarian microcystic stromal tumours. APC inactivation has been described at the tumour level in epithelial ovarian cancers (EOCs). Here, we report the identification of APC germline pathogenic variants in two patients diagnosed with premenopausal EOC in early 30s, with no other pathogenic variant detected in the known ovarian cancer predisposing genes. Subsequent tumour analysis showed neither a second hit of APC inactivation nor ß-catenin activation. Both tumours did not have a homologous recombination (HR) deficiency, pointing towards the implication of other genes than those involved in HR. APC may contribute to the carcinogenesis of EOC in a multifactorial context. Further studies are required to clarify the role of APC in predisposition to EOC.


Asunto(s)
Carcinoma Epitelial de Ovario , Genes APC , Neoplasias Ováricas , Adulto , Femenino , Humanos , Carcinoma Epitelial de Ovario/genética , Predisposición Genética a la Enfermedad/genética , Células Germinativas/patología , Mutación de Línea Germinal/genética , Neoplasias Ováricas/genética , Premenopausia , beta Catenina/genética
5.
Hum Mutat ; 43(12): 2308-2323, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36273432

RESUMEN

Modeling splicing is essential for tackling the challenge of variant interpretation as each nucleotide variation can be pathogenic by affecting pre-mRNA splicing via disruption/creation of splicing motifs such as 5'/3' splice sites, branch sites, or splicing regulatory elements. Unfortunately, most in silico tools focus on a specific type of splicing motif, which is why we developed the Splicing Prediction Pipeline (SPiP) to perform, in one single bioinformatic analysis based on a machine learning approach, a comprehensive assessment of the variant effect on different splicing motifs. We gathered a curated set of 4616 variants scattered all along the sequence of 227 genes, with their corresponding splicing studies. The Bayesian analysis provided us with the number of control variants, that is, variants without impact on splicing, to mimic the deluge of variants from high-throughput sequencing data. Results show that SPiP can deal with the diversity of splicing alterations, with 83.13% sensitivity and 99% specificity to detect spliceogenic variants. Overall performance as measured by area under the receiving operator curve was 0.986, better than SpliceAI and SQUIRLS (0.965 and 0.766) for the same data set. SPiP lends itself to a unique suite for comprehensive prediction of spliceogenicity in the genomic medicine era. SPiP is available at: https://sourceforge.net/projects/splicing-prediction-pipeline/.


Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Humanos , Teorema de Bayes , Empalme del ARN/genética , Exones/genética , Sitios de Empalme de ARN/genética , Aprendizaje Automático , Intrones/genética
6.
Cancers (Basel) ; 13(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202044

RESUMEN

BACKGROUND: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5' region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. METHODS: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. RESULTS: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. CONCLUSIONS: Taken together, our results firmly establish that the BRCA1 5' region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.

7.
Cancer Res ; 80(17): 3593-3605, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32641407

RESUMEN

BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.


Asunto(s)
Neoplasias de la Mama/genética , Genes BRCA2 , Predisposición Genética a la Enfermedad/genética , Neoplasias Ováricas/genética , Empalme Alternativo , Animales , Exones , Femenino , Humanos , Ratones , Isoformas de Proteínas
8.
Cancer Res ; 80(7): 1374-1386, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32046981

RESUMEN

Germline nonsense and canonical splice site variants identified in disease-causing genes are generally considered as loss-of-function (LoF) alleles and classified as pathogenic. However, a fraction of such variants could maintain function through their impact on RNA splicing. To test this hypothesis, we used the alternatively spliced BRCA2 exon 12 (E12) as a model system because its in-frame skipping leads to a potentially functional protein. All E12 variants corresponding to putative LoF variants or predicted to alter splicing (n = 40) were selected from human variation databases and characterized for their impact on splicing in minigene assays and, when available, in patient lymphoblastoid cell lines. Moreover, a selection of variants was analyzed in a mouse embryonic stem cell-based functional assay. Using these complementary approaches, we demonstrate that a subset of variants, including nonsense variants, induced in-frame E12 skipping through the modification of splice sites or regulatory elements and, consequently, led to an internally deleted but partially functional protein. These data provide evidence, for the first time in a cancer-predisposition gene, that certain presumed null variants can retain function due to their impact on splicing. Further studies are required to estimate cancer risk associated with these hypomorphic variants. More generally, our findings highlight the need to exercise caution in the interpretation of putative LoF variants susceptible to induce in-frame splicing modifications. SIGNIFICANCE: This study presents evidence that certain presumed loss-of-function variants in a cancer predisposition gene can retain function due to their direct impact on RNA splicing.


Asunto(s)
Empalme Alternativo , Proteína BRCA2/genética , Predisposición Genética a la Enfermedad , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Células Madre Embrionarias , Exones/genética , Femenino , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Persona de Mediana Edad , Linaje , Polimorfismo de Nucleótido Simple , Proteínas Recombinantes/genética
9.
Cancers (Basel) ; 12(2)2020 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-31991861

RESUMEN

Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2-4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases.

10.
BMC Genomics ; 21(1): 86, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992191

RESUMEN

BACKGROUND: Branch points (BPs) map within short motifs upstream of acceptor splice sites (3'ss) and are essential for splicing of pre-mature mRNA. Several BP-dedicated bioinformatics tools, including HSF, SVM-BPfinder, BPP, Branchpointer, LaBranchoR and RNABPS were developed during the last decade. Here, we evaluated their capability to detect the position of BPs, and also to predict the impact on splicing of variants occurring upstream of 3'ss. RESULTS: We used a large set of constitutive and alternative human 3'ss collected from Ensembl (n = 264,787 3'ss) and from in-house RNAseq experiments (n = 51,986 3'ss). We also gathered an unprecedented collection of functional splicing data for 120 variants (62 unpublished) occurring in BP areas of disease-causing genes. Branchpointer showed the best performance to detect the relevant BPs upstream of constitutive and alternative 3'ss (99.48 and 65.84% accuracies, respectively). For variants occurring in a BP area, BPP emerged as having the best performance to predict effects on mRNA splicing, with an accuracy of 89.17%. CONCLUSIONS: Our investigations revealed that Branchpointer was optimal to detect BPs upstream of 3'ss, and that BPP was most relevant to predict splicing alteration due to variants in the BP area.


Asunto(s)
Intrones , Precursores del ARN , Sitios de Empalme de ARN , Empalme del ARN , Empalme Alternativo , Biología Computacional/métodos , Humanos , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Procesamiento Postranscripcional del ARN , Curva ROC , Reproducibilidad de los Resultados
12.
Hum Mutat ; 40(10): 1713-1730, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31050087

RESUMEN

Ataxia-telangiectasia (A-T) is a recessive disorder caused by biallelic pathogenic variants of ataxia-telangiectasia mutated (ATM). This disease is characterized by progressive ataxia, telangiectasia, immune deficiency, predisposition to malignancies, and radiosensitivity. However, hypomorphic variants may be discovered associated with very atypical phenotypes, raising the importance of evaluating their pathogenic effects. In this study, multiple functional analyses were performed on lymphoblastoid cell lines from 36 patients, comprising 49 ATM variants, 24 being of uncertain significance. Thirteen patients with atypical phenotype and presumably hypomorphic variants were of particular interest to test strength of functional analyses and to highlight discrepancies with typical patients. Western-blot combined with transcript analyses allowed the identification of one missing variant, confirmed suspected splice defects and revealed unsuspected minor transcripts. Subcellular localization analyses confirmed the low level and abnormal cytoplasmic localization of ATM for most A-T cell lines. Interestingly, atypical patients had lower kinase defect and less altered cell-cycle distribution after genotoxic stress than typical patients. In conclusion, this study demonstrated the pathogenic effects of the 49 variants, highlighted the strength of KAP1 phosphorylation test for pathogenicity assessment and allowed the establishment of the Ataxia-TeLangiectasia Atypical Score to predict atypical phenotype. Altogether, we propose strategies for ATM variant detection and classification.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Empalme Alternativo , Ciclo Celular , Línea Celular , Análisis Mutacional de ADN , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Mutación , Fenotipo
13.
Hum Mutat ; 40(9): 1557-1578, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31131967

RESUMEN

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Biología Computacional/métodos , Mutación Missense , Neoplasias/diagnóstico , Empalme Alternativo , Detección Precoz del Cáncer , Femenino , Predisposición Genética a la Enfermedad , Humanos , Funciones de Verosimilitud , Masculino , Herencia Multifactorial , Neoplasias/genética
15.
Nucleic Acids Res ; 46(15): 7913-7923, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750258

RESUMEN

Variant interpretation is the key issue in molecular diagnosis. Spliceogenic variants exemplify this issue as each nucleotide variant can be deleterious via disruption or creation of splice site consensus sequences. Consequently, reliable in silico prediction of variant spliceogenicity would be a major improvement. Thanks to an international effort, a set of 395 variants studied at the mRNA level and occurring in 5' and 3' consensus regions (defined as the 11 and 14 bases surrounding the exon/intron junction, respectively) was collected for 11 different genes, including BRCA1, BRCA2, CFTR and RHD, and used to train and validate a new prediction protocol named Splicing Prediction in Consensus Elements (SPiCE). SPiCE combines in silico predictions from SpliceSiteFinder-like and MaxEntScan and uses logistic regression to define optimal decision thresholds. It revealed an unprecedented sensitivity and specificity of 99.5 and 95.2%, respectively, and the impact on splicing was correctly predicted for 98.8% of variants. We therefore propose SPiCE as the new tool for predicting variant spliceogenicity. It could be easily implemented in any diagnostic laboratory as a routine decision making tool to help geneticists to face the deluge of variants in the next-generation sequencing era. SPiCE is accessible at (https://sourceforge.net/projects/spicev2-1/).


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Variación Genética , Sitios de Empalme de ARN/genética , Empalme del ARN , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Humanos , Cooperación Internacional , Internet , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Oncotarget ; 9(25): 17334-17348, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29707112

RESUMEN

Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.

17.
Fam Cancer ; 17(2): 281-285, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28819700

RESUMEN

The invalidation of the Mismatch Repair (MMR) system is responsible for a so-called "deficient MMR" phenotype (dMMR) characterized by microsatellite instability and abnormal pattern of expression of MMR proteins in tumor tissue. This phenotype occurs in at least 20% of sporadic endometrial adenocarcinomas by epigenetic silencing of MLH1 gene. It is also observed in virtually all tumors occurring in patients with Lynch syndrome by monoallelic germline mutation in one of the MMR genes. The determination of this phenotype (dMMR vs. proficient MMR-pMMR) has therefore a pivotal place in the diagnosis algorithm for Lynch syndrome by monoallelic germline mutation in one of the MMR genes. The determination of this phenotype (dMMR vs. proficient MMR-pMMR) has therefore a pivotal place in the diagnosis algorithm for Lynch syndrome. We report the case of a woman with an early-onset endometrial adenocarcinoma who was suspected to be affected with Lynch syndrome based on tumor dMMR phenotype (MSI associated with loss of expression of MSH2 and MSH6 proteins). After complete germline and somatic evaluations, this phenotype was eventually explained by two MSH2 somatic mutations and the diagnosis of Lynch-like syndrome due to an unidentified MSH2 germline mutation was ruled out. Somatic mosaicism at low mutation rate was unlikely as no mutation was detected by DNA analysis from various tissue samples. Nevertheless, the three patient's children were tested for the two mutations and these tests were negative. Biallelic somatic mutations of one MMR gene is a mechanism of invalidation of the MMR system in sporadic cases. Clinicians have to be aware of this mechanism because of the great clinical implication for the patients and their relatives.


Asunto(s)
Adenocarcinoma/genética , Reparación de la Incompatibilidad de ADN/genética , Neoplasias Endometriales/genética , Proteína 2 Homóloga a MutS/genética , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Edad de Inicio , Proteínas de Unión al ADN/metabolismo , Neoplasias Endometriales/diagnóstico por imagen , Neoplasias Endometriales/patología , Neoplasias Endometriales/cirugía , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Imagen por Resonancia Magnética , Inestabilidad de Microsatélites , Persona de Mediana Edad , Proteína 2 Homóloga a MutS/metabolismo
18.
Eur J Hum Genet ; 25(12): 1345-1353, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29255180

RESUMEN

RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have recently been involved in breast and ovarian cancer predisposition: RAD51B, RAD51C, and RAD51D in ovarian cancer, RAD51B and XRCC2 in breast cancer. The aim of this study was to estimate the contribution of deleterious variants in the five RAD51 paralogs to breast and ovarian cancers. The five RAD51 paralog genes were analyzed by next-generation sequencing technologies in germline DNA from 2649 consecutive patients diagnosed with breast and/or ovarian cancer. Twenty-one different deleterious variants were identified in the RAD51 paralogs in 30 patients: RAD51B (n = 4), RAD51C (n = 12), RAD51D (n = 7), XRCC2 (n = 2), and XRCC3 (n = 5). The overall deleterious variant rate was 1.13% (95% confidence interval (CI): 0.72-1.55%) (30/2649), including 15 variants in breast cancer only cases (15/2063; 0.73% (95% CI: 0.34-1.11%)) and 15 variants in cases with at least one ovarian cancer (15/570; 2.63% (95% CI: 1.24-4.02%)). This study is the first evaluation of the five RAD51 paralogs in breast and ovarian cancer predisposition and it demonstrates that deleterious variants can be present in breast cancer only cases. Moreover, this is the first time that XRCC3 deleterious variants have been identified in breast and ovarian cancer cases.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Ováricas/genética , Recombinasa Rad51/genética , Adulto , Anciano , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/genética , Femenino , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/patología
19.
Eur J Hum Genet ; 25(10): 1147-1154, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28905878

RESUMEN

Interpretation of variants of unknown significance (VUS) is a major challenge for laboratories performing molecular diagnosis of hereditary breast and ovarian cancer (HBOC), especially considering that many genes are now known to be involved in this syndrome. One important way these VUS can have a functional impact is through their effects on RNA splicing. Here we present a custom RNA-Seq assay plus bioinformatics and biostatistics pipeline to analyse specifically alternative and abnormal splicing junctions in 11 targeted HBOC genes. Our pipeline identified 14 new alternative splices in BRCA1 and BRCA2 in addition to detecting the majority of known alternative spliced transcripts therein. We provide here the first global splicing pattern analysis for the other nine genes, which will enable a comprehensive interpretation of splicing defects caused by VUS in HBOC. Previously known splicing alterations were consistently detected, occasionally with a more complex splicing pattern than expected. We also found that splicing in the 11 genes is similar in blood and breast tissue, supporting the utility and simplicity of blood splicing assays. Our pipeline is ready to be integrated into standard molecular diagnosis for HBOC, but it could equally be adapted for an integrative analysis of any multigene disorder.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/genética , Pruebas Genéticas/métodos , Neoplasias Ováricas/genética , Análisis de Secuencia de ARN/métodos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Femenino , Genoma Humano , Humanos , Neoplasias Ováricas/diagnóstico
20.
Int J Cancer ; 138(4): 891-900, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26317927

RESUMEN

Therapeutic strategies targeting Homologous Recombination Deficiency (HRD) in breast cancer requires patient stratification. The LST (Large-scale State Transitions) genomic signature previously validated for triple-negative breast carcinomas (TNBC) was evaluated as biomarker of HRD in luminal (hormone receptor positive) and HER2-overexpressing (HER2+) tumors. The LST genomic signature related to the number of large-scale chromosomal breakpoints in SNP-array tumor profile was applied to identify HRD in in-house and TCGA sets of breast tumors, in which the status of BRCA1/2 and other genes was also investigated. In the in-house dataset, HRD was predicted in 5% (20/385) of sporadic tumors luminal or HER2+ by the LST genomic signature and the inactivation of BRCA1, BRCA2 or RAD51C confirmed this prediction in 75% (12/16) of the tested cases. In 14% (6/43) of tumors occurring in BRCA1/2 mutant carriers, the corresponding wild-type allele was retained emphasizing the importance of determining the tumor status. In the TCGA luminal and HER2+ subtypes HRD incidence was estimated at 5% (18/329, 95%CI: 5-8%) and 2% (1/59, 95%CI: 2-9%), respectively. In TNBC cisplatin-based neo-adjuvant clinical trials, HRD is shown to be a necessary condition for cisplatin sensitivity. This analysis demonstrates the high performance of the LST genomic signature for HRD detection in breast cancers, which suggests its potential as a biomarker for genetic testing and patient stratification for clinical trials evaluating platinum salts and PARP inhibitors.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Carcinoma/genética , Reparación del ADN por Recombinación/genética , Transcriptoma/genética , Neoplasias de la Mama/patología , Carcinoma/patología , Rotura Cromosómica , Femenino , Genes BRCA2 , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptor ErbB-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA