Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38927448

RESUMEN

The evaluation of in vitro biological activity of several previously reported quinolinequinones (AQQ1-5) against 60 human cancer cell lines (NCI-60) used by the National Cancer Institute's Developmental Therapeutics Program (DTP) contributed to our earlier research on possible anticancer and/or antibacterial agents. Of interest, NCI-60 screening revealed that two quinolinequinones (AQQ1 and AQQ2) significantly reduced the proliferation of several cancer genotypes. Following the administration of a single dose and five additional doses, all quinolinequinones demonstrated a significant inhibitory effect on the growth of leukemia and other cancer cell lines. Hence, a series of subsequent in vitro biological assessments were performed to further understand the mechanistic impact of the compounds. In MTT assays, it was found that AQQ1 and AQQ2 exhibited higher efficacy against DU-145 cells (IC50 4.18 µM and 4.17 µM, respectively) compared to MDA-MB-231 (IC50 8.27 and 13.33 µM, respectively) and HCT-116 cells (IC50 5.83 and 9.18 µM, respectively). Additionally, AQQ1 demonstrated greater activity in this context. Further investigations revealed that AQQ1 inhibited DU-145 cell growth and migration dose-dependently. Remarkably, arrest of the DU-145 cell cycle at G0/G1 phase and ROS elevation were observed. Pharmacokinetic (PK) studies revealed that AQQ1 has better PK parameters than AQQ2 with %F of 9.83 in rat. Considering the data obtained with human liver microsomal stability studies, AQQ1 should have a better PK profile in human subjects. In silico studies (molecular dynamics) with three kinases (CDK2, CDK4, and MAPK) leading to cell cycle arrest at G0/G1 identified MAPK as a probable target for AQQ1. Taken together, our results showed that AQQ1 could be a potential chemotherapeutic lead molecule for prostate cancer.

2.
Chem Biodivers ; 20(9): e202300848, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37590495

RESUMEN

It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones (AQQ1-5) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones (AQQ2-5) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3, in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ (AAQ2) have been studied.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias del Colon , Neoplasias Renales , Leucemia , Melanoma , Neoplasias Ováricas , Neoplasias de la Próstata , Humanos , Masculino , Femenino , Estructura Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga
3.
Chem Biol Drug Des ; 102(5): 1133-1154, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37537000

RESUMEN

Lead molecules containing 1,4-quinone moiety are intriguing novel compounds that can be utilized to treat cancer owing to their antiproliferative activities. Nine previously reported quinolinequinones (AQQ1-9) were studied to better understand their inhibitory profile to produce potent and possibly safe lead molecules. The National Cancer Institute (NCI) of Bethesda chose all quinolinequinones (AQQ1-9) based on the NCI Developmental Therapeutics Program and tested them against a panel of 60 cancer cell lines. At a single dose and five further doses, AQQ7 significantly inhibited the proliferation of all leukemia cell lines and some breast cancer cell lines. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ7, in MCF7 and T-47D breast cancer cells, DU-145 prostate cancer cells, HCT-116 and COLO 205 colon cancer cell lines, and HaCaT human keratinocytes using the MTT assay. AQQ7 showed particularly high cytotoxicity against MCF7 cells. Further analysis showed that AQQ7 exhibits anticancer activity through the induction of apoptosis without causing cell cycle arrest or oxidative stress. Molecular docking simulations for AQQ2 and AQQ7 were conducted against the COX, PTEN, and EGFR proteins, which are commonly overexpressed in breast, cervical, and prostate cancers. The in vitro ADME and in vivo PK profiling of these compounds have also been reported.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias de la Próstata , Humanos , Masculino , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Células MCF-7 , Línea Celular Tumoral
4.
Eur J Pharm Sci ; 65: 147-55, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25261338

RESUMEN

The in vitro metabolism and in vivo pharmacokinetic (PK) properties of DNDI-VL-2098, a potential oral agent for Visceral Leishmaniasis (VL) were studied and used to predict its human pharmacokinetics. DNDI-VL-2098 showed a low solubility (10µM) and was highly permeable (>200nm/s) in the Caco-2 model. It was stable in vitro in liver microsomes and hepatocytes and no metabolite was detectable in circulating plasma from dosed animals suggesting very slow, if any, metabolism of the compound. DNDI-VL-2098 was moderate to highly bound to plasma proteins across the species tested (94-98%). DNDI-VL-2098 showed satisfactory PK properties in mouse, hamster, rat and dog with a low blood clearance (<15% of hepatic blood flow except hamster), a volume of distribution of about 3 times total body water, acceptable half-life (1-6h across the species) and good oral bioavailability (37-100%). Allometric scaling of the preclinical PK data to human gave a blood half-life of approximately 20h suggesting that the compound could be a once-a-day drug. Based on the above assumptions, the minimum efficacious dose predicted for a 50kg human was 150mg and 300mg, using efficacy results in the mouse and hamster, respectively.


Asunto(s)
Antiparasitarios/farmacología , Antiparasitarios/farmacocinética , Leishmaniasis Visceral/tratamiento farmacológico , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Cricetinae , Perros , Evaluación Preclínica de Medicamentos/métodos , Semivida , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Microsomas Hepáticos/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...