Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Anim Ecol ; 92(12): 2333-2347, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37843043

RESUMEN

Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.


Asunto(s)
Ecosistema , Gadus morhua , Animales , Clima , Isótopos , Conducta Espacial
3.
Mov Ecol ; 11(1): 56, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710318

RESUMEN

BACKGROUND: Animals are expected to adjust their social behaviour to cope with challenges in their environment. Therefore, for fish populations in temperate regions with seasonal and daily environmental oscillations, characteristic rhythms of social relationships should be pronounced. To date, most research concerning fish social networks and biorhythms has occurred in artificial laboratory environments or over confined temporal scales of days to weeks. Little is known about the social networks of wild, freely roaming fish, including how seasonal and diurnal rhythms modulate social networks over the course of a full year. The advent of high-resolution acoustic telemetry enables us to quantify detailed social interactions in the wild over time-scales sufficient to examine seasonal rhythms at whole-ecosystems scales. Our objective was to explore the rhythms of social interactions in a social fish population at various time-scales over one full year in the wild by examining high-resolution snapshots of a dynamic social network. METHODS: To that end, we tracked the behaviour of 36 adult common carp, Cyprinus carpio, in a 25 ha lake and constructed temporal social networks among individuals across various time-scales, where social interactions were defined by proximity. We compared the network structure to a temporally shuffled null model to examine the importance of social attraction, and checked for persistent characteristic groups over time. RESULTS: The clustering within the carp social network tended to be more pronounced during daytime than nighttime throughout the year. Social attraction, particularly during daytime, was a key driver for interactions. Shoaling behavior substantially increased during daytime in the wintertime, whereas in summer carp interacted less frequently, but the interaction duration increased. Therefore, smaller, characteristic groups were more common in the summer months and during nighttime, where the social memory of carp lasted up to two weeks. CONCLUSIONS: We conclude that social relationships of carp change diurnally and seasonally. These patterns were likely driven by predator avoidance, seasonal shifts in lake temperature, visibility, forage availability and the presence of anoxic zones. The techniques we employed can be applied generally to high-resolution biotelemetry data to reveal social structures across other fish species at ecologically realistic scales.

4.
MethodsX ; 10: 102222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251651

RESUMEN

Acoustic telemetry is a popular and cost-efficient method for tracking the movements of animals in the aquatic ecosystem. But data acquired via acoustic telemetry often contains spurious detections that must be identified and excluded by researchers to ensure valid results. Such data management is difficult as the amount of data collected often surpasses the capabilities of simple spreadsheet applications. ATfiltR is an open-source package programmed in R that allows users to integrate all telemetry data collected into a single file, to conditionally attribute animal data and location data to detections and to filter spurious detections based on customizable rules. Such tool will likely be useful to new researchers in acoustic telemetry and enhance results reproducibility.•ATfiltR compiles telemetry files and identifies and stores all data that was collected outside of your study period (e.g. when your receivers were on land for servicing) elsewhere.•As spurious detections are unlikely to appear sequentially in the data, ATfiltR finds all detections that occurred only once (per receiver or in the whole array) within a user-designated time period and stores them elsewhere.•ATfiltR identifies detections that are impossible given the animals' swimming speeds and the receivers detection range and stores them elsewhere.

5.
Science ; 379(6635): 946-951, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862780

RESUMEN

Ecosystem-based management is costly. Therefore, without rigorously showing that it can outperform traditional species-focused alternatives, its broad-scale adoption in conservation is unlikely. We present a large-scale replicated and controlled set of whole-lake experiments in fish conservation (20 lakes monitored over 6 years with more than 150,000 fish sampled) to examine the outcomes of ecosystem-based habitat enhancement (coarse woody habitat addition and shallow littoral zone creation) versus a widespread, species-focused alternative that has long dominated fisheries management practice (i.e., fish stocking). Adding coarse woody habitats alone did not, on average, enhance fish abundance, but creating shallow water habitat consistently did, especially for juvenile fish. Species-focused fish stocking completely failed. We provide strong evidence questioning the performance of species-focused conservation actions in aquatic ecosystems and instead recommend ecosystem-based management of key habitats.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Explotaciones Pesqueras , Peces , Lagos , Madera , Animales
6.
Science ; 375(6582): eabg1780, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175823

RESUMEN

Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal "movement ecology" (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data on movements of animals in the wild. These high-throughput wildlife tracking systems now allow more thorough investigation of variation among individuals and species across space and time, the nature of biological interactions, and behavioral responses to the environment. Movement ecology is rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks, providing improved opportunities for conservation and insights into the movements of wild animals, and their causes and consequences.


Asunto(s)
Animales Salvajes/fisiología , Conducta Animal , Macrodatos , Ecología , Ambiente , Movimiento , Migración Animal , Animales , Recolección de Datos , Ecosistema , Análisis Espacio-Temporal
7.
J R Soc Interface ; 18(183): 20210445, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665974

RESUMEN

A long-term, yet detailed view into the social patterns of aquatic animals has been elusive. With advances in reality mining tracking technologies, a proximity-based social network (PBSN) can capture detailed spatio-temporal underwater interactions. We collected and analysed a large dataset of 108 freshwater fish from four species, tracked every few seconds over 1 year in their natural environment. We calculated the clustering coefficient of minute-by-minute PBSNs to measure social interactions, which can happen among fish sharing resources or habitat preferences (positive/neutral interactions) or in predator and prey during foraging interactions (agonistic interactions). A statistically significant coefficient compared to an equivalent random network suggests interactions, while a significant aggregated clustering across PBSNs indicates prolonged, purposeful social behaviour. Carp (Cyprinus carpio) displayed within- and among-species interactions, especially during the day and in the winter, while tench (Tinca tinca) and catfish (Silurus glanis) were solitary. Perch (Perca fluviatilis) did not exhibit significant social behaviour (except in autumn) despite being usually described as a predator using social facilitation to increase prey intake. Our work illustrates how methods for building a PBSN can affect the network's structure and highlights challenges (e.g. missing signals, different burst frequencies) in deriving a PBSN from reality mining technologies.


Asunto(s)
Carpas , Percas , Animales , Ecosistema , Agua Dulce , Conducta Predatoria
8.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619086

RESUMEN

Harvest of fish and wildlife, both commercial and recreational, is a selective force that can induce evolutionary changes to life history and behavior. Naturally selective forces may create countering selection pressures. Assessing natural fitness represents a considerable challenge in broadcast spawners. Thus, our understanding about the relative strength of natural and fisheries selection is slim. In the field, we compared the strength and shape of harvest selection to natural selection on body size over four years and behavior over one year in a natural population of a freshwater top predator, the northern pike (Esox lucius). Natural selection was approximated by relative reproductive success via parent-offspring genetic assignments over four years. Harvest selection was measured by comparing individuals susceptible to recreational angling with individuals never captured by this gear type. Individual behavior was measured by high-resolution acoustic telemetry. Harvest and natural size selection operated with equal strength but opposing directions, and harvest size selection was consistently negative in all study years. Harvest selection also had a substantial behavioral component independent of body length, while natural behavioral selection was not documented, suggesting the potential for directional harvest selection favoring inactive, timid fish. Simulations of the outcomes of different fishing regulations showed that traditional minimum size-based harvest limits are unlikely to counteract harvest selection without being completely restrictive. Our study suggests harvest selection may be inevitable and recreational fisheries may thus favor small, inactive, shy, and difficult-to-capture fish. Increasing fractions of shy fish in angling-exploited stocks would have consequences for stock assessment and all fisheries operating with hook and line.


Asunto(s)
Evolución Biológica , Explotaciones Pesqueras , Peces , Selección Genética , Animales , Conservación de los Recursos Naturales , Aptitud Genética
9.
J Anim Ecol ; 89(10): 2325-2344, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32654123

RESUMEN

Translocation into a novel environment through common fisheries management practices, such as fish stocking, provides opportunities to study behavioural and fitness impacts of translocations at realistic ecological scales. The process of stocking, as well as the unfamiliarity with novel ecological conditions and the interactions with resident fish may affect translocated individuals, leading to alterations of behaviours and causing fitness impacts. Our objectives were to investigate how aquatic top predators behaviourally establish themselves and compete with resident individuals following introduction in a novel lake environment and to investigate the resulting fitness consequences. Using high-resolution acoustic telemetry, we conducted whole-lake experiments and compared the activity, activity-space size and fate of translocated and resident individuals in two model top predators, the northern pike Esox lucius (n = 160) and European catfish Silurus glanis (n = 33). Additionally, we compared the reproductive success of translocated and resident northern pike. The experiment was conducted with large (adult) individuals of different origins, resilient to predation, but subject to agonistic interactions and competition with resident fish. Over a period of several months, the translocated catfish exhibited consistently larger activity-space sizes than resident catfish, but did not differ from residents in activity and survival. The pike from one of the two translocated origins we tested also showed elevated space-use, and both translocated origins revealed higher mortality rates than their resident conspecifics, indicating maladjustment to their novel environment. When non-resident pike reproduced, they overwhelmingly produced hybrid offspring with resident fish, indicating that introductions fostered gene flow of non-native genes. Our study indicates that fish introductions result in behavioural and fitness impacts even in large-bodied top predators that experience low levels of natural predation risk.


Asunto(s)
Bagres , Lagos , Animales , Esocidae , Explotaciones Pesqueras , Conducta Predatoria
10.
Ecol Lett ; 21(6): 779-793, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29611278

RESUMEN

Understanding how humans and other animals behave in response to changes in their environments is vital for predicting population dynamics and the trajectory of coupled social-ecological systems. Here, we present a novel framework for identifying emergent social behaviours in foragers (including humans engaged in fishing or hunting) in predator-prey contexts based on the exploration difficulty and exploitation potential of a renewable natural resource. A qualitative framework is introduced that predicts when foragers should behave territorially, search collectively, act independently or switch among these states. To validate it, we derived quantitative predictions from two models of different structure: a generic mathematical model, and a lattice-based evolutionary model emphasising exploitation and exclusion costs. These models independently identified that the exploration difficulty and exploitation potential of the natural resource controls the social behaviour of resource exploiters. Our theoretical predictions were finally compared to a diverse set of empirical cases focusing on fisheries and aquatic organisms across a range of taxa, substantiating the framework's predictions. Understanding social behaviour for given social-ecological characteristics has important implications, particularly for the design of governance structures and regulations to move exploited systems, such as fisheries, towards sustainability. Our framework provides concrete steps in this direction.


Asunto(s)
Ecología , Ecosistema , Animales , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Humanos , Dinámica Poblacional
12.
Am J Physiol Regul Integr Comp Physiol ; 303(2): R150-8, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22621965

RESUMEN

Central to mammalian mitochondrial biogenesis is the transcriptional master regulator peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), and a network of DNA-binding proteins it coactivates. We explored the role of this pathway in muscle mitochondrial biogenesis in response to thermal acclimation in goldfish (Carassius auratus). We investigated the transcriptional response of PGC-1α, PGC-1ß, and their antagonist the nuclear receptor interacting protein 1 (RIP140), as well as the mRNA and protein patterns of DNA-binding proteins that bind PGC-1, including nuclear respiratory factors (NRF) 1 and 2, retinoid X receptor α (RXRα), estrogen-related receptor α (ERRα), thyroid receptor α-1 (TRα-1), PPARα, and PPARß/δ, and the host cell factor 1 (HCF1), which links PGC-1 and NRF-2. Cold-acclimated (4°C) fish had higher COX activities (4.5-fold) and COX4-1 mRNA levels (3.5-fold per total RNA; 6.5-fold per gram tissue) than warm-acclimated (32°C) fish. The transcription factor patterns were profoundly influenced by changes in RNA per gram tissue (2-fold higher in cold fish) and nuclear protein content (2-fold higher in warm fish). In cold-acclimated fish, mRNA per gram tissue was elevated for PGC-1ß, RIP140, NRF-1, HCF1, NRF-2α, NRF-2ß-2, ERRα, PPAR ß/δ, and RXRα, but other transcriptional regulators either did not change (PGC-1α, PPARα) or even decreased (TRα-1). Nuclear protein levels in cold-acclimated fish were higher only for NRF-1; other proteins were either unaffected (NRF-2α, ERRα) or decreased (NRF-2ß1/2, TRα, RXRα). Collectively, these data support the role for NRF-1 in regulating cold-induced mitochondrial biogenesis in goldfish, with effects mediated by PGC-1ß, rather than PGC-1α.


Asunto(s)
Aclimatación/fisiología , Metabolismo Energético/fisiología , Regulación de la Expresión Génica/fisiología , Carpa Dorada/fisiología , Músculo Esquelético/fisiología , Temperatura , Animales , Proteínas de Unión al ADN/metabolismo , Mitocondrias Musculares/fisiología , Factor 1 Relacionado con NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Factores de Transcripción/metabolismo
13.
J Exp Biol ; 214(Pt 11): 1880-7, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21562175

RESUMEN

Many fish species respond to low temperature by inducing mitochondrial biogenesis, reflected in an increase in activity of the mitochondrial enzyme cytochrome c oxidase (COX). COX is composed of 13 subunits, three encoded by mitochondrial (mt)DNA and 10 encoded by nuclear genes. We used real-time PCR to measure mRNA levels for the 10 nuclear-encoded genes that are highly expressed in muscle. We measured mRNA levels in white muscle of three minnow species, each at two temperatures: zebrafish (Danio rerio) acclimated to 11 and 30°C, goldfish (Carassius auratus) acclimated to 4 and 35°C, and northern redbelly dace (Chrosomus eos) collected in winter and summer. We hypothesized that temperature-induced changes in COX activity would be paralleled by COX nuclear-encoded subunit transcript abundance. However, we found mRNA for COX subunits showed pronounced differences in thermal responses. Though zebrafish COX activity did not change in the cold, the transcript levels of four subunits decreased significantly (COX5A1, 60% decrease; COX6A2, 70% decrease; COX6C, 50% decrease; COX7B, 55% decrease). Treatments induced changes in COX activity in both dace (2.9 times in winter fish) and goldfish (2.5 times in cold fish), but the response in transcript levels was highly variable. Some subunits failed to increase in one (goldfish COX7A2, dace COX6A2) or both (COX7B, COX6B2) species. Other transcripts increased 1.7-100 times. The most cold-responsive subunits were COX4-1 (7 and 21.3 times higher in dace and goldfish, respectively), COX5A1 (13.9 and 5 times higher), COX6B1 (6 and 10 times higher), COX6C (11 and 4 times higher) and COX7C (13.3 and 100 times higher). The subunits that most closely paralleled COX increases in the cold were COX5B2 (dace 2.5 times, goldfish 1.7 times) and COX6A2 (dace 4.1 times, goldfish 1.7 times). Collectively, these studies suggest that COX gene expression is not tightly coordinated during cold-induced mitochondrial remodelling in fish muscle. Further, they caution against arguments about the importance of transcriptional regulation based on measurement of mRNA levels of select subunits of multimeric proteins.


Asunto(s)
Cipriniformes/genética , Complejo IV de Transporte de Electrones/genética , Proteínas de Peces/genética , Regulación Enzimológica de la Expresión Génica , Carpa Dorada/genética , Músculo Esquelético/enzimología , Pez Cebra/genética , Animales , Mitocondrias/enzimología , Mitocondrias/genética , Músculo Esquelético/metabolismo , ARN Mensajero/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...