Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Rep ; 13(1): 14642, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670131

RESUMEN

Formaldehyde (HCHO) is a toxic and carcinogenic pollutant and human metabolite that reacts with biomolecules under physiological conditions. Quantifying HCHO is essential for ongoing biological and biomedical research on HCHO; however, its reactivity, small size and volatility make this challenging. Here, we report a novel HCHO detection/quantification method that couples cysteamine-mediated HCHO scavenging with SPME GC-MS analysis. Our NMR studies confirm cysteamine as an efficient and selective HCHO scavenger that out-competes O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine, the most commonly used scavenger, and forms a stable thiazolidine amenable to GC-MS quantification. Validation of our GC-MS method using FDA and EMA guidelines revealed detection and quantification limits in the nanomolar and micromolar ranges respectively, while analysis of bacterial cell lysate confirmed its applicability in biological samples. Overall, our studies confirm that cysteamine scavenging coupled to SPME GC-MS analysis provides a sensitive and chemically robust method to quantify HCHO in biological samples.


Asunto(s)
Investigación Biomédica , Cisteamina , Humanos , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida , Formaldehído
2.
Environ Sci Process Impacts ; 25(2): 304-313, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36484250

RESUMEN

Chloramines (NH2Cl, NHCl2, and NCl3) are toxic compounds that can be created during the use of bleach-based disinfectants that contain hypochlorous acid (HOCl) and the hypochlorite ion (OCl-) as their active ingredients. Chloramines can then readily transfer from the aqueous-phase to the gas-phase. Atmospheric chemical ionization mass spectrometry using iodide adduct chemistry (I-CIMS) made observations across two periods (2014 and 2016) at an urban background site on the University of Leicester campus (Leicester, UK). Both monochloramine (NH2Cl) and molecular chlorine (Cl2) were detected and positively identified from calibrated mass spectra during both sampling periods and to our knowledge, this is the first detection of NH2Cl outdoors. Mixing ratios of NH2Cl reached up to 2.2 and 4.0 parts per billion by volume (ppbv), with median mixing ratios of 30 and 120 parts per trillion by volume (pptv) during the 2014 and 2016 sampling periods, respectively. Levels of Cl2 were observed to reach up to 220 and 320 pptv. Analysis of the NH2Cl and Cl2 data pointed to the same local source, a nearby indoor sports complex with a swimming pool and a cleaning product storage shed. No appreciable levels of NHCl2 and NCl3 were observed outdoors, suggesting the indoor pool was not likely to be the primary source of the observed ambient chloramines, as prior measurements made in indoor pool atmospheres indicate that NCl3 would be expected to dominate. Instead, these observations point to indoor cleaning and/or cleaning product emissions as the probable source of NH2Cl and Cl2 where the measured levels provide indirect evidence for substantial amounts transported from indoors to outdoors. Our upper estimate for total NH2Cl emissions from the University of Leicester indoor sports complexes scaled for similar sports complexes across the UK is 3.4 × 105 ± 1.1 × 105 µg h-1 and 0.0017 ± 0.00034 Gg yr-1, respectively. The Cl-equivalent emissions in HCl are only an order of magnitude less to those from hazardous waste incineration and iron and steel sinter production in the UK National Atmospheric Emissions Inventory (NAEI).


Asunto(s)
Desinfectantes , Purificación del Agua , Cloro , Cloraminas/química , Desinfectantes/química , Ácido Hipocloroso/química
3.
Sci Transl Med ; 14(671): eabl5849, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36383685

RESUMEN

Acute cardiorespiratory breathlessness accounts for one in eight of all emergency hospitalizations. Early, noninvasive diagnostic testing is a clinical priority that allows rapid triage and treatment. Here, we sought to find and replicate diagnostic breath volatile organic compound (VOC) biomarkers of acute cardiorespiratory disease and understand breath metabolite network enrichment in acute disease, with a view to gaining mechanistic insight of breath biochemical derangements. We collected and analyzed exhaled breath samples from 277 participants presenting acute cardiorespiratory exacerbations and aged-matched healthy volunteers. Topological data analysis phenotypes differentiated acute disease from health and acute cardiorespiratory exacerbation subtypes (acute heart failure, acute asthma, acute chronic obstructive pulmonary disease, and community-acquired pneumonia). A multibiomarker score (101 breath biomarkers) demonstrated good diagnostic sensitivity and specificity (≥80%) in both discovery and replication sets and was associated with all-cause mortality at 2 years. In addition, VOC biomarker scores differentiated metabolic subgroups of cardiorespiratory exacerbation. Louvain clustering of VOCs coupled with metabolite enrichment and similarity assessment revealed highly specific enrichment patterns in all acute disease subgroups, for example, selective enrichment of correlated C5-7 hydrocarbons and C3-5 carbonyls in heart failure and selective depletion of correlated aldehydes in acute asthma. This study identified breath VOCs that differentiate acute cardiorespiratory exacerbations and associated subtypes and metabolic clusters of disease-associated VOCs.


Asunto(s)
Asma , Insuficiencia Cardíaca , Compuestos Orgánicos Volátiles , Humanos , Pruebas Respiratorias , Compuestos Orgánicos Volátiles/análisis , Enfermedad Aguda , Disnea/diagnóstico , Asma/diagnóstico , Biomarcadores/metabolismo , Insuficiencia Cardíaca/diagnóstico
4.
Environ Microbiol ; 24(9): 4449-4465, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35642645

RESUMEN

Exposure to particulate matter (PM), a major component of air pollution, is associated with exacerbation of chronic respiratory disease, and infectious diseases such as community-acquired pneumonia. Although PM can cause adverse health effects through direct damage to host cells, our previous study showed that PM can also impact bacterial behaviour by promoting in vivo colonization. In this study we describe the genetic mechanisms involved in the bacterial response to exposure to black carbon (BC), a constituent of PM found in most sources of air pollution. We show that Staphylococcus aureus strain USA300 LAC grown in BC prior to inoculation showed increased murine respiratory tract colonization and pulmonary invasion in vivo, as well as adhesion and invasion of human epithelial cells in vitro. Global transcriptional analysis showed that BC has a widespread effect on S. aureus transcriptional responses, altering the regulation of the major virulence gene regulators Sae and Agr and causing increased expression of genes encoding toxins, proteases and immune evasion factors. Together these data describe a previously unrecognized causative mechanism of air pollution-associated infection, in that exposure to BC can increase bacterial colonization and virulence factor expression by acting directly on the bacterium rather than via the host.


Asunto(s)
Contaminación del Aire , Infecciones Estafilocócicas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Material Particulado/metabolismo , Péptido Hidrolasas/genética , Sistema Respiratorio/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulencia/genética , Factores de Virulencia/metabolismo
5.
Epidemiol Infect ; 150: e42, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35094727

RESUMEN

A subset of events within the UK Government Events Research Programme (ERP), developed to examine the risk of transmission of COVID-19 from attendance at events, was examined to explore the public health impact of holding mass sporting events. We used contact tracing data routinely collected through telephone interviews and online questionnaires, to describe the potential public health impact of the large sporting and cultural events on potential transmission and incidence of COVID-19. Data from the EURO 2020 matches hosted at Wembley identified very high numbers of individuals who tested positive for COVID-19 and were traced through NHS Test & Trace. This included both individuals who were potentially infectious (3036) and those who acquired their infection during the time of the Final (6376). This is in contrast with the All England Lawn Tennis Championships at Wimbledon, where there were similar number of spectators and venue capacity but there were lower total numbers of potentially infectious cases (299) and potentially acquired cases (582). While the infections associated with the EURO 2020 event may be attributed to a set of socio-cultural circumstances which are unlikely to be replicated for the forthcoming sporting season, other aspects may be important to consider including mitigations for spectators to consider such as face coverings when travelling to and from events, minimising crowding in poorly ventilated indoor spaces such as bars and pubs where people may congregate to watch events, and reducing the risk of aerosol exposure through requesting that individuals avoid shouting and chanting in large groups in enclosed spaces.


Asunto(s)
COVID-19/epidemiología , Reuniones Masivas , Salud Pública , Deportes , COVID-19/transmisión , Trazado de Contacto , Inglaterra/epidemiología , Humanos , SARS-CoV-2
6.
ERJ Open Res ; 7(3)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34476250

RESUMEN

BACKGROUND: Asthma and COPD continue to cause considerable diagnostic and treatment stratification challenges. Volatile organic compounds (VOCs) have been proposed as feasible diagnostic and monitoring biomarkers in airway diseases. AIMS: To 1) conduct a systematic review evaluating the diagnostic accuracy of VOCs in diagnosing airway diseases; 2) understand the relationship between reported VOCs and biomarkers of type-2 inflammation; 3) assess the standardisation of reporting according to STARD and TRIPOD criteria; 4) review current methods of breath sampling and analysis. METHODS: A PRISMA-oriented systematic search was conducted (January 1997 to December 2020). Search terms included: "asthma", "volatile organic compound(s)", "VOC" and "COPD". Two independent reviewers examined the extracted titles against review objectives. RESULTS: 44 full-text papers were included; 40/44 studies were cross-sectional and four studies were interventional in design; 17/44 studies used sensor-array technologies (e.g. eNose). Cross-study comparison was not possible across identified studies due to the heterogeneity in design. The commonest airway diseases differentiating VOCs belonged to carbonyl-containing classes (i.e. aldehydes, esters and ketones) and hydrocarbons (i.e. alkanes and alkenes). Although individual markers that are associated with clinical biomarkers of type-2 inflammation were recognised (i.e. ethane and 3,7-dimethylnonane for asthma and α-methylstyrene and decane for COPD), these were not consistently identified across studies. Only 3/44 reported following STARD or TRIPOD criteria for diagnostic accuracy and multivariate reporting, respectively. CONCLUSIONS: Breath VOCs show promise as diagnostic biomarkers of airway diseases and for type-2 inflammation profiling. However, future studies should focus on transparent reporting of diagnostic accuracy and multivariate models and continue to focus on chemical identification of volatile metabolites.

7.
ERJ Open Res ; 7(3)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34235208

RESUMEN

BACKGROUND: The ongoing coronavirus disease 2019 (COVID-19) pandemic has claimed over two and a half million lives worldwide so far. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is perceived to be seasonally recurrent, and a rapid noninvasive biomarker to accurately diagnose patients early on in their disease course will be necessary to meet the operational demands for COVID-19 control in the coming years. OBJECTIVE: The aim of this study was to evaluate the role of exhaled breath volatile biomarkers in identifying patients with suspected or confirmed COVID-19 infection, based on their underlying PCR status and clinical probability. METHODS: A prospective, real-world, observational study was carried out, recruiting adult patients with suspected or confirmed COVID-19 infection. Breath samples were collected using a standard breath collection bag, modified with appropriate filters to comply with local infection control recommendations, and samples were analysed using gas chromatography-mass spectrometry (TD-GC-MS). RESULTS: 81 patients were recruited between April 29 and July 10, 2020, of whom 52 out of 81 (64%) tested positive for COVID-19 by reverse transcription-polymerase chain reaction (RT-PCR). A regression analysis identified a set of seven exhaled breath features (benzaldehyde, 1-propanol, 3,6-methylundecane, camphene, beta-cubebene, iodobenzene and an unidentified compound) that separated PCR-positive patients with an area under the curve (AUC): 0.836, sensitivity: 68%, specificity: 85%. CONCLUSIONS: GC-MS-detected exhaled breath biomarkers were able to identify PCR-positive COVID-19 patients. External replication of these compounds is warranted to validate these results.

8.
Environ Pollut ; 274: 116563, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33561599

RESUMEN

Daytime atmospheric oxidation chemistry is conventionally considered to be driven primarily by the OH radical, formed via photolytic sources. In this paper we examine how, during winter when photolytic processes are slow, chlorine chemistry can have a significant impact on oxidative processes in the urban boundary layer. Photolysis of nitryl chloride (ClNO2) provides a significant source of chlorine atoms, which enhances the oxidation of volatile organic compounds (VOCs) and the production of atmospheric pollutants. We present a set of observations of ClNO2 and HONO made at urban locations in central England in December 2014 and February 2016. While direct emissions and in-situ chemical formation of HONO continue throughout the day, ClNO2 is only formed at night and is usually completely photolyzed by midday. Our data show that, during winter, ClNO2 often persists through the daylight hours at mixing ratios above 10-20 ppt (on average). In addition, relatively high mixing ratios of daytime HONO (>65 ppt) provide a strong source of OH radicals throughout the day. The combined effects of ClNO2 and HONO result in sustained sources of Cl and OH radicals from sunrise to sunset, which form additional ozone, PAN, oxygenated VOCs, and secondary organic aerosol. We show that radical sources such as ClNO2 and HONO can lead to a surprisingly photoactive urban atmosphere during winter and should therefore be included in atmospheric chemical models.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Atmósfera , Inglaterra
9.
Thorax ; 76(5): 514-521, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33414240

RESUMEN

Exhaled breath analysis has the potential to provide valuable insight on the status of various metabolic pathways taking place in the lungs locally and other vital organs, via systemic circulation. For years, volatile organic compounds (VOCs) have been proposed as feasible alternative diagnostic and prognostic biomarkers for different respiratory pathologies.We reviewed the currently published literature on the discovery of exhaled breath VOCs and their utilisation in various respiratory diseasesKey barriers in the development of clinical breath tests include the lack of unified consensus for breath collection and analysis and the complexity of understanding the relationship between the exhaled VOCs and the underlying metabolic pathways. We present a comprehensive overview, in light of published literature and our experience from coordinating a national breathomics centre, of the progress made to date and some of the key challenges in the field and ways to overcome them. We particularly focus on the relevance of breathomics to clinicians and the valuable insights it adds to diagnostics and disease monitoring.Breathomics holds great promise and our findings merit further large-scale multicentre diagnostic studies using standardised protocols to help position this novel technology at the centre of respiratory disease diagnostics.


Asunto(s)
Pulmón/metabolismo , Trastornos Respiratorios/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Biomarcadores/metabolismo , Pruebas Respiratorias/métodos , Espiración , Humanos
10.
J Breath Res ; 15(2)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33227714

RESUMEN

The headspace of a biological sample contains exogenous volatile organic compounds (VOCs) present within the sampling environment which represent the background signal. This study aimed to characterise the background signal generated from a headspace sampling system in a clinical site, to evaluate intra- and inter-day variation of background VOC and to understand the impact of a sample itself upon commonly reported background VOC using sputum headspace samples from severe asthmatics. The headspace, in absence of a biological sample, was collected hourly from 11am to 3pm within a day (time of clinical samples acquisition), and from Monday to Friday in a week, and analysed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Chemometric analysis identified 1120 features, 37 of which were present in at least the 80% of all the samples. The analyses of intra- and inter-day background variations were performed on 13 of the most abundant features, ubiquitously present in headspace samples. The concentration ratios relative to background were reported for the selected abundant VOC in 36 asthmatic sputum samples, acquired from 36 stable severe asthma patients recruited at Glenfield Hospital, Leicester, UK. The results identified no significant intra- or inter-day variations in compounds levels and no systematic bias ofz-scores, with the exclusion of benzothiazole, whose abundance increased linearly between 11am and 3pm with a maximal intra-day fold change of 2.13. Many of the identified background features are reported in literature as components of headspace of biological samples and are considered potential biomarkers for several diseases. The selected background features were identified in headspace of all severe asthma sputum samples, albeit with varying levels of enrichment relative to background. Our observations support the need to consider the background signal derived from the headspace sampling system when developing and validating headspace biomarker signatures using clinical samples.


Asunto(s)
Asma , Compuestos Orgánicos Volátiles , Asma/diagnóstico , Pruebas Respiratorias , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Esputo/química , Compuestos Orgánicos Volátiles/análisis
11.
Mol Cell ; 80(6): 996-1012.e9, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33147438

RESUMEN

Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.


Asunto(s)
Alcohol Deshidrogenasa/genética , Aldehído Deshidrogenasa Mitocondrial/genética , Formaldehído/sangre , Leucemia/genética , Adolescente , Aldehídos/sangre , Animales , Niño , Preescolar , Aductos de ADN/genética , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Femenino , Formaldehído/toxicidad , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Lactante , Leucemia/sangre , Leucemia/patología , Masculino , Ratones , Mutación/genética , Especificidad por Sustrato
12.
Anal Chem ; 92(20): 13953-13960, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32985172

RESUMEN

Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful analytical tool for both nontargeted and targeted analyses. However, there is a need for more integrated workflows for processing and managing the resultant high-complexity datasets. End-to-end workflows for processing GC×GC data are challenging and often require multiple tools or software to process a single dataset. We describe a new approach, which uses an existing underutilized interface within commercial software to integrate free and open-source/external scripts and tools, tailoring the workflow to the needs of the individual researcher within a single software environment. To demonstrate the concept, the interface was successfully used to complete a first-pass alignment on a large-scale GC×GC metabolomics dataset. The analysis was performed by interfacing bespoke and published external algorithms within a commercial software environment to automatically correct the variation in retention times captured by a routine reference standard. Variation in 1tR and 2tR was reduced on average from 8 and 16% CV prealignment to less than 1 and 2% post alignment, respectively. The interface enables automation and creation of new functions and increases the interconnectivity between chemometric tools, providing a window for integrating data-processing software with larger informatics-based data management platforms.


Asunto(s)
Cromatografía de Gases/métodos , Programas Informáticos , Algoritmos , Automatización , Metabolómica
13.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190326, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32981428

RESUMEN

This paper explores the drivers and role of science in air quality policy over the last 100 years or so. Case studies on the smogs of Los Angeles and London, acid rain, health impacts of particulate matter, diesel and lead in fuel are used to explore the drivers and models for the interaction of science, evidence and air quality policy. It suggests there are two phases to air quality mitigation, the first driven by the air quality emergency as the pollution is visible and the effects can be relatively obvious and the second driven by science that is directed towards continuous improvement. A critical element of the 'science phase' is the evidence base, the models of evidence-based and -informed policy-making are explored with the conclusion that it is optimal when guided by the ideal of co-creation of knowledge and policy options between scientists and policy-makers. The future and wider drivers for air quality are detailed with a number of key areas for 'success' indicated as important for air quality policy development such as continuous improvement. Overall, we find there is tension between two factors: the ambition to reduce emissions, improve air quality and reduce the impacts on public health and the environment on one hand, and questions of cost, technical feasibility and societal acceptability on the other. This article is part of a discussion meeting issue 'Air quality, past present and future'.

14.
BMJ Open ; 9(3): e025486, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30852546

RESUMEN

INTRODUCTION: Patients presenting with acute undifferentiated breathlessness are commonly encountered in admissions units across the UK. Existing blood biomarkers have clinical utility in distinguishing patients with single organ pathologies but have poor discriminatory power in multifactorial presentations. Evaluation of volatile organic compounds (VOCs) in exhaled breath offers the potential to develop biomarkers of disease states that underpin acute cardiorespiratory breathlessness, owing to their proximity to the cardiorespiratory system. To date, there has been no systematic evaluation of VOC in acute cardiorespiratory breathlessness. The proposed study will seek to use both offline and online VOC technologies to evaluate the predictive value of VOC in identifying common conditions that present with acute cardiorespiratory breathlessness. METHODS AND ANALYSIS: A prospective real-world observational study carried out across three acute admissions units within Leicestershire. Participants with self-reported acute breathlessness, with a confirmed primary diagnosis of either acute heart failure, community-acquired pneumonia and acute exacerbation of asthma or chronic obstructive pulmonary disease will be recruited within 24 hours of admission. Additionally, school-age children admitted with severe asthma will be evaluated. All participants will undergo breath sampling on admission and on recovery following discharge. A range of online technologies including: proton transfer reaction mass spectrometry, gas chromatography ion mobility spectrometry, atmospheric pressure chemical ionisation-mass spectrometry and offline technologies including gas chromatography mass spectroscopy and comprehensive two-dimensional gas chromatography-mass spectrometry will be used for VOC discovery and replication. For offline technologies, a standardised CE-marked breath sampling device (ReCIVA) will be used. All recruited participants will be characterised using existing blood biomarkers including C reactive protein, brain-derived natriuretic peptide, troponin-I and blood eosinophil levels and further evaluated using a range of standardised questionnaires, lung function testing, sputum cell counts and other diagnostic tests pertinent to acute disease. ETHICS AND DISSEMINATION: The National Research Ethics Service Committee East Midlands has approved the study protocol (REC number: 16/LO/1747). Integrated Research Approval System (IRAS) 198921. Findings will be presented at academic conferences and published in peer-reviewed scientific journals. Dissemination will be facilitated via a partnership with the East Midlands Academic Health Sciences Network and via interaction with all UK-funded Medical Research Council and Engineering and Physical Sciences Research Council molecular pathology nodes. TRIAL REGISTRATION NUMBER: NCT03672994.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico , Disnea/diagnóstico , Estudios Multicéntricos como Asunto/métodos , Estudios Observacionales como Asunto/métodos , Compuestos Orgánicos Volátiles/análisis , Enfermedad Aguda , Adulto , Pruebas Respiratorias , Recolección de Datos , Diagnóstico Diferencial , Espiración , Cromatografía de Gases y Espectrometría de Masas , Humanos , Estudios Prospectivos , Enfermedades Respiratorias/diagnóstico , Tamaño de la Muestra , Esputo
15.
J Chromatogr A ; 1594: 160-172, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30755317

RESUMEN

Precision medicine has spurred new innovations in molecular pathology leading to recent advances in the analysis of exhaled breath as a non-invasive diagnostic tool. Volatile organic compounds (VOCs) detected in exhaled breath have the potential to reveal a wealth of chemical and metabolomic information. This study describes the development of a method for the analysis of breath, based on automated thermal desorption (TD) combined with flow modulated comprehensive two-dimensional gas chromatography (GC×GC) with dual flame ionisation and quadrupole mass spectrometric detection (FID and qMS). The constrained optimisation and analytical protocol was designed to meet the practical demands of a large-scale multi-site clinical study, while maintaining analytical rigour to produce high fidelity data. The results demonstrate a comprehensive method optimisation for the collection and analysis of breath VOCs by GC×GC, integral to the standardisation and integration of breath analysis within large clinical studies.


Asunto(s)
Pruebas Respiratorias/métodos , Estudios Clínicos como Asunto/métodos , Ionización de Llama , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis , Humanos , Estándares de Referencia
16.
J Asthma ; 55(11): 1205-1213, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29211599

RESUMEN

OBJECTIVES: A novel gas chromatography-mass spectrometry (GC-MS) method has been developed to quantify salbutamol in micro-volumes (10 µL) of blood. A potential application is paediatric therapeutic dose monitoring (TDM) in acute severe asthma. METHODS: At presentation, the children receive multiple doses of salbutamol (inhaled, nebulised and occasionally intravenous) but it is difficult to distinguish children who do not respond to treatment because of inadequate concentrations from those with toxicity, as symptoms are similar. A comparison was made between traditional dried blood spots (DBS) and the newly developed technique volumetric absorptive micro-sampling (VAMS), with specific investigation into the effect of drying time on analyte recovery. RESULTS: For both sampling techniques, the final assay demonstrated good precision and accuracy across the concentration range tested (3-100 ng/mL), including both the normal therapeutic and toxic range. The method was developed to comply with FDA guidelines with precision and accuracy ≤15% for all concentrations, except the limit of quantification (5 ng/mL) where they were ≤20%. VAMS offered advantages in sampling ease and reduced GC-MS interference. The assay was successfully applied to the quantification of blood salbutamol concentrations in three healthy volunteers dosed with 1 mg salbutamol by inhalation. CONCLUSIONS: This demonstrated its potential for use in paediatric TDM studies, where in the acute situation considerably higher doses of salbutamol will have been administered. This is the first time that a TDM method for salbutamol has been carried out using VAMS and offers all the advantages provided by DBS, whilst eliminating the inherent sampling volume inaccuracies of traditional DBS collection.


Asunto(s)
Albuterol/administración & dosificación , Albuterol/uso terapéutico , Asma/tratamiento farmacológico , Monitoreo de Drogas/métodos , Enfermedad Aguda , Administración por Inhalación , Recolección de Muestras de Sangre , Niño , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Humanos , Índice de Severidad de la Enfermedad
17.
Nature ; 548(7669): 549-554, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28813411

RESUMEN

The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.


Asunto(s)
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldehído/química , Formaldehído/metabolismo , Redes y Vías Metabólicas , Mutágenos/química , Mutágenos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Animales , Carbono/deficiencia , Línea Celular , Pollos , Coenzimas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Inactivación Metabólica , Ratones , Nucleótidos/biosíntesis , Oxidación-Reducción , Serina/química , Serina/metabolismo , Tetrahidrofolatos/metabolismo
18.
Environ Microbiol ; 19(5): 1868-1880, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28195384

RESUMEN

Air pollution is the world's largest single environmental health risk (WHO). Particulate matter such as black carbon is one of the main components of air pollution. The effects of particulate matter on human health are well established however the effects on bacteria, organisms central to ecosystems in humans and in the natural environment, are poorly understood. We report here for the first time that black carbon drastically changes the development of bacterial biofilms, key aspects of bacterial colonisation and survival. Our data show that exposure to black carbon induces structural, compositional and functional changes in the biofilms of both S. pneumoniae and S. aureus. Importantly, the tolerance of the biofilms to multiple antibiotics and proteolytic degradation is significantly affected. Additionally, our results show that black carbon impacts bacterial colonisation in vivo. In a mouse nasopharyngeal colonisation model, black carbon caused S. pneumoniae to spread from the nasopharynx to the lungs, which is essential for subsequent infection. Therefore our study highlights that air pollution has a significant effect on bacteria that has been largely overlooked. Consequently these findings have important implications concerning the impact of air pollution on human health and bacterial ecosystems worldwide.


Asunto(s)
Contaminación del Aire/efectos adversos , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Hollín/farmacología , Streptococcus pneumoniae/crecimiento & desarrollo , Animales , Biopelículas/efectos de los fármacos , Humanos , Pulmón/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Nasofaringe/microbiología , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiología , Proteolisis/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Streptococcus pneumoniae/efectos de los fármacos
20.
Analyst ; 141(24): 6564-6570, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27845786

RESUMEN

Alkanes provide a particular analytical challenge to commonly used chemical ionisation methods such as proton-transfer from water owing to their basicity. It is demonstrated that the fluorocarbon ions CF3+ and CF2H+, generated from CF4, as reagents provide an effective means of detecting light n-alkanes in the range C2-C6 using direct chemical ionisation mass spectrometry. The present work assesses the applicability of the reagents in Chemical Ionisation Mass Spectrometric (CI-TOF-MS) environments with factors such as high moisture content, operating pressures of 1-10 Torr, accelerating electric fields (E/N) and long-lived intermediate complex formation. Of the commonly used chemical ionisation reagents, H3O+ and NO+ only react with hexane and higher while O2+ reacts with all the target samples, but creates significant fragmentation. By contrast, CF3+ and CF2H+ acting together were found to produce little or no fragmentation. In dry conditions with E/N = 100 Td or higher the relative intensity of CF2H+ to CF3+ was mostly less than 1% but always less than 3%, making CF3+ the main reagent ion. Using O2+ in a parallel series of experiments, a substantially greater degree of fragmentation was observed. The detection sensitivities of the alkanes with CF3+ and CF2H+, while relatively low, were found to be better than those observed with O2+. Experiments using alkane mixtures in the ppm range have shown the ionisation technique based on CF3+ and CF2H+ to be particularly useful for measurements of alkane/air mixtures found in polluted environments. As a demonstration of the technique's effectiveness in complex mixtures, the detection of n-alkanes in a smoker's breath is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...