Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(10): 102502, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739382

RESUMEN

The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the subatomic to the cosmological. Measurements of the tritium end-point spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the cyclotron radiation emission spectroscopy (CRES) technique culminating in the first frequency-based neutrino mass limit. With only a cm^{3}-scale physical detection volume, a limit of m_{ß}<155 eV/c^{2} (152 eV/c^{2}) is extracted from the background-free measurement of the continuous tritium beta spectrum in a Bayesian (frequentist) analysis. Using ^{83m}Kr calibration data, a resolution of 1.66±0.19 eV (FWHM) is measured, the detector response model is validated, and the efficiency is characterized over the multi-keV tritium analysis window. These measurements establish the potential of CRES for a high-sensitivity next-generation direct neutrino mass experiment featuring low background and high resolution.

2.
Phys Rev Lett ; 114(16): 162501, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25955048

RESUMEN

It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

3.
Phys Rev Lett ; 103(9): 092302, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19792792

RESUMEN

We report results from a search for strangelets (small chunks of strange quark matter) in lunar soil using the Yale WNSL accelerator as a mass spectrometer. We have searched over a range in mass from A = 42 to A = 70 amu for nuclear charges 5, 6, 8, 9, and 11. No strangelets were found in the experiment. For strangelets with nuclear charge 8, a concentration in lunar soil higher than 10(-16) is excluded at the 95% confidence level. The implied limit on the strangelet flux in cosmic rays is the most sensitive to date for the covered range and is relevant to both recent theoretical flux predictions and a strangelet candidate event found by the AMS-01 experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...