Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Res ; 94(6): 820-7, 2004 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-14764454

RESUMEN

Nuclear transfer techniques have been proposed as a strategy for generating an unlimited supply of rejuvenated and histocompatible stem cells for the treatment of cardiac diseases. For this purpose, c-kit-positive fetal liver stem cells obtained from cloned embryos were injected in the border zone of infarcted mice to induce tissue reconstitution. Cloned embryos were derived from somatic cell fusion between nuclei of cultured LacZ-positive fibroblasts and enucleated oocytes of a different mouse strain. We report that regenerating myocardium replaced 38% of the scar at 1 month. The rebuilt tissue expressed LacZ and was composed of myocytes and vessels connected with the coronary circulation. Myocytes were functionally competent and expressed contractile proteins, desmin, connexin43, and N-cadherin. These structural characteristics indicated that the new myocytes were electrically and mechanically coupled. Similarly, the formed coronary arterioles and capillary structures contained blood and contributed, therefore, to tissue oxygenation. Cardiac replacement resulted in an improvement of ventricular hemodynamics and in a reduction of diastolic wall stress. These beneficial effects were obtained by stem cell transdifferentiation and commitment to the cardiac cell lineages. Myocardial growth was independent from fusion of the injected stem cells with preexisting partner cells. In conclusion, c-kit-positive stem cells derived by nuclear transfer cloning restore infarcted myocardium. Although problems currently plague nuclear transplantation, including the potential for epigenetic and imprinting abnormalities, stem cells derived from cloned embryos are sufficiently normal to repair damaged tissue in vivo. Importantly, the magnitude of myocardial regeneration obtained in this study is significantly superior to that achieved with adult bone marrow cells.


Asunto(s)
Células Clonales/trasplante , Trasplante de Tejido Fetal , Corazón/fisiología , Infarto del Miocardio/terapia , Técnicas de Transferencia Nuclear , Trasplante de Células Madre , Animales , Diferenciación Celular , División Celular , Fusión Celular , Tamaño de la Célula , Clonación de Organismos , Femenino , Fibroblastos/ultraestructura , Genes Reporteros , Inyecciones , Operón Lac , Hígado/citología , Hígado/embriología , Masculino , Ratones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Neovascularización Fisiológica , Oocitos/ultraestructura , Proteínas Proto-Oncogénicas c-kit/análisis , Regeneración , Ultrasonografía
2.
Circ Res ; 94(4): 514-24, 2004 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-14726476

RESUMEN

To determine whether cellular aging leads to a cardiomyopathy and heart failure, markers of cellular senescence, cell death, telomerase activity, telomere integrity, and cell regeneration were measured in myocytes of aging wild-type mice (WT). These parameters were similarly studied in insulin-like growth factor-1 (IGF-1) transgenic mice (TG) because IGF-1 promotes cell growth and survival and may delay cellular aging. Importantly, the consequences of aging on cardiac stem cell (CSC) growth and senescence were evaluated. Gene products implicated in growth arrest and senescence, such as p27Kip1, p53, p16INK4a, and p19ARF, were detected in myocytes of young WT mice, and their expression increased with age. IGF-1 attenuated the levels of these proteins at all ages. Telomerase activity decreased in aging WT myocytes but increased in TG, paralleling the changes in Akt phosphorylation. Reduction in nuclear phospho-Akt and telomerase resulted in telomere shortening and uncapping in WT myocytes. Senescence and death of CSCs increased with age in WT impairing the growth and turnover of cells in the heart. DNA damage and myocyte death exceeded cell formation in old WT, leading to a decreased number of myocytes and heart failure. This did not occur in TG in which CSC-mediated myocyte regeneration compensated for the extent of cell death preventing ventricular dysfunction. IGF-1 enhanced nuclear phospho-Akt and telomerase delaying cellular aging and death. The differential response of TG mice to chronological age may result from preservation of functional CSCs undergoing myocyte commitment. In conclusion, senescence of CSCs and myocytes conditions the development of an aging myopathy.


Asunto(s)
Envejecimiento/patología , Células Madre Multipotentes/citología , Miocitos Cardíacos/citología , Proteínas Serina-Treonina Quinasas , Animales , Apoptosis , Biomarcadores , Recuento de Células , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , División Celular , Linaje de la Célula , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Ciclinas/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/fisiología , Masculino , Ratones , Ratones Transgénicos , Estrés Oxidativo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteínas Recombinantes de Fusión/fisiología , Telomerasa/metabolismo , Telómero/ultraestructura , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...