Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Neurosci ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261008

RESUMEN

Perivascular mural cells including vascular smooth cells (VSMCs) and pericytes are integral components of the vascular system. In the central nervous system (CNS), pericytes are also indispensable for the blood-brain barrier (BBB), blood-spinal cord barrier and blood-retinal barrier, and play key roles in maintaining cerebrovascular and neuronal functions. However, the functional specifications of pericytes between CNS and peripheral organs have not been resolved at the genetic and molecular levels. Hence, the generation of reliable CNS pericyte-specific models and genetic tools remains very challenging. Here, we report a new CNS pericyte marker in mice. This putative cation-transporting ATPase 13A5 (Atp13a5) marker was identified through single cell transcriptomics, based on its specificity to brain pericytes. We further generated a knock-in model with both tdTomato reporter and Cre recombinase. Using this model to trace the distribution of Atp13a5-positive pericytes in mice, we found that the tdTomato reporter reliably labels the CNS pericytes, including the ones in spinal cord and retina but not peripheral organs. Interestingly, brain pericytes are likely shaped by the developing neural environment, as Atp13a5-positive pericytes start to appear around murine embryonic day 15 (E15) and expand along the cerebrovasculature. Thus, Atp13a5 is a specific marker of CNS pericyte lineage, and this Atp13a5-based model is a reliable tool to explore the heterogeneity of pericytes and BBB functions in health and diseases.Significance Statement Pericyte is a key component of the blood-brain barrier (BBB) and highly implicated in neurological and neurodegenerative diseases. However, current genetic tools for brain pericytes often come with limitations, due to the lack of specificity to the pericytes in the brain or central nervous system (CNS), as well as the overlap with other cell types, particularly vascular smooth muscle cells. Here, we identified that Atp13a5 is a CNS-specific pericyte marker based on mouse single-cell transcriptomics, and further validate it using a knock-in model carrying Atp13a5-driven tdTomato reporter and Cre recombinase. The success of the Atp13a5-based model opens new possibility of genetic manipulations targeting only CNS pericytes in vivo and studying their biology and functions in health and diseases more specifically.

2.
Nat Neurosci ; 27(9): 1721-1733, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38961228

RESUMEN

Age is a major nonmodifiable risk factor for ischemic stroke. Central nervous system-associated macrophages (CAMs) are resident immune cells located along the brain vasculature at the interface between the blood circulation and the parenchyma. By using a clinically relevant thromboembolic stroke model in young and aged male mice and corresponding human tissue samples, we show that during aging, CAMs acquire a central role in orchestrating immune cell trafficking after stroke through the specific modulation of adhesion molecules by endothelial cells. The absence of CAMs provokes increased leukocyte infiltration (neutrophils and CD4+ and CD8+ T lymphocytes) and neurological dysfunction after stroke exclusively in aged mice. Major histocompatibility complex class II, overexpressed by CAMs during aging, plays a significant role in the modulation of immune responses to stroke. We demonstrate that during aging, CAMs become central coordinators of the neuroimmune response that ensure a long-term fine-tuning of the immune responses triggered by stroke.


Asunto(s)
Envejecimiento , Macrófagos , Accidente Cerebrovascular , Animales , Macrófagos/inmunología , Ratones , Masculino , Envejecimiento/inmunología , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/patología , Ratones Endogámicos C57BL , Humanos , Encéfalo/inmunología , Encéfalo/patología , Células Endoteliales/inmunología
3.
Neuron ; 112(16): 2732-2748.e8, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38897208

RESUMEN

Microglia are brain-resident macrophages that contribute to central nervous system (CNS) development, maturation, and preservation. Here, we examine the consequences of permanent microglial deficiencies on brain aging using the Csf1rΔFIRE/ΔFIRE mouse model. In juvenile Csf1rΔFIRE/ΔFIRE mice, we show that microglia are dispensable for the transcriptomic maturation of other brain cell types. By contrast, with advancing age, pathologies accumulate in Csf1rΔFIRE/ΔFIRE brains, macroglia become increasingly dysregulated, and white matter integrity declines, mimicking many pathological features of human CSF1R-related leukoencephalopathy. The thalamus is particularly vulnerable to neuropathological changes in the absence of microglia, with atrophy, neuron loss, vascular alterations, macroglial dysregulation, and severe tissue calcification. We show that populating Csf1rΔFIRE/ΔFIRE brains with wild-type microglia protects against many of these pathological changes. Together with the accompanying study by Chadarevian and colleagues1, our results indicate that the lifelong absence of microglia results in an age-related neurodegenerative condition that can be counteracted via transplantation of healthy microglia.


Asunto(s)
Envejecimiento , Encéfalo , Microglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Microglía/patología , Microglía/metabolismo , Animales , Ratones , Envejecimiento/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Encéfalo/patología , Ratones Endogámicos C57BL , Masculino , Sustancia Blanca/patología , Leucoencefalopatías/patología , Tálamo/patología
4.
Alzheimers Dement ; 20(7): 4527-4539, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38787758

RESUMEN

INTRODUCTION: We explored how blood-brain barrier (BBB) leakage rate of gadolinium chelates (Ktrans) and BBB water exchange rate (kw) varied in cerebral small vessel disease (cSVD) subtypes. METHODS: Thirty sporadic cSVD, 40 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and 13 high-temperature requirement factor A serine peptidase 1 (HTRA) -related cSVD subjects were investigated parallel to 40 healthy individuals. Subjects underwent clinical, cognitive, and MRI assessment. RESULTS: In CADASIL, no difference in Ktrans, but lower kw was observed in multiple brain regions. In sporadic cSVD, no difference in kw, but higher Ktrans was found in the whole brain and normal-appearing white matter. In HTRA1-related cSVD, both higher Ktrans in the whole brain and lower kw in multiple brain regions were observed. In each patient group, the altered BBB measures were correlated with lesion burden or clinical severity. DISCUSSION: In cSVD subtypes, distinct alterations of kw and Ktrans were observed. The combination of Ktrans and kw can depict the heterogeneous BBB dysfunction. HIGHLIGHTS: We measured BBB leakage to gadolinium-based contrast agent (Ktrans) and water exchange rate (kw) across BBB in three subtypes of cSVD. CADASIL is characterized by lower kw, HTRA1-related cSVD exhibits both higher Ktrans and lower kw, while sporadic cSVD is distinguished by higher Ktrans. There are distinct alterations in kw and Ktrans among subtypes of cSVD, indicating the heterogeneous nature of BBB dysfunction.


Asunto(s)
Barrera Hematoencefálica , Enfermedades de los Pequeños Vasos Cerebrales , Imagen por Resonancia Magnética , Humanos , Barrera Hematoencefálica/patología , Enfermedades de los Pequeños Vasos Cerebrales/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Anciano , CADASIL/patología , Serina Peptidasa A1 que Requiere Temperaturas Altas , Gadolinio , Medios de Contraste , Adulto
6.
Nat Commun ; 15(1): 2243, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472200

RESUMEN

Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased ß-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Angiogénesis , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Perfilación de la Expresión Génica
8.
Neuron ; 111(22): 3499-3501, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972562

RESUMEN

In this issue of Neuron, Zhan, Meng, et al.1 explore the non-canonical roles of connexin-43 in brain endothelial cells and connect its faltering expression to the depletion of nicotinamide adenine dinucleotide (NAD), mitochondrial stress, and blood-brain barrier rupture.


Asunto(s)
Barrera Hematoencefálica , Conexinas , Conexinas/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , NAD/metabolismo
9.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685924

RESUMEN

Small vessel disease (SVD) is a highly prevalent disorder of the brain's microvessels and a common cause of dementia as well as ischaemic and haemorrhagic strokes. Though much about the underlying pathophysiology of SVD remains poorly understood, a wealth of recently published evidence strongly suggests a key role of microvessel endothelial dysfunction and a compromised blood-brain barrier (BBB) in the development and progression of the disease. Understanding the causes and downstream consequences associated with endothelial dysfunction in this pathological context could aid in the development of effective diagnostic and prognostic tools and provide promising avenues for potential therapeutic interventions. In this scoping review, we aim to summarise the findings from clinical studies examining the role of the molecular mechanisms underlying endothelial dysfunction in SVD, focussing on biochemical markers of endothelial dysfunction detectable in biofluids, including cell adhesion molecules, BBB transporters, cytokines/chemokines, inflammatory markers, coagulation factors, growth factors, and markers involved in the nitric oxide cascade.


Asunto(s)
Enfermedades Vasculares , Humanos , Biomarcadores , Microvasos , Barrera Hematoencefálica , Citocinas
13.
Nat Cardiovasc Res ; 1(2): 108-115, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35450117

RESUMEN

Vascular dysfunction is frequently seen in disorders associated with cognitive impairment, dementia and Alzheimer's disease (AD). Recent advances in neuroimaging and fluid biomarkers suggest that vascular dysfunction is not an innocent bystander only accompanying neuronal dysfunction. Loss of cerebrovascular integrity, often referred to as breakdown in the blood-brain barrier (BBB), has recently shown to be an early biomarker of human cognitive dysfunction and possibly underlying mechanism of age-related cognitive decline. Damage to the BBB may initiate or further invoke a range of tissue injuries causing synaptic and neuronal dysfunction and cognitive impairment that may contribute to AD. Therefore, better understanding of how vascular dysfunction caused by BBB breakdown interacts with amyloid-ß and tau AD biomarkers to confer cognitive impairment may lead to new ways of thinking about pathogenesis, and possibly treatment and prevention of early cognitive impairment, dementia and AD, for which we still do not have effective therapies.

14.
Geroscience ; 44(3): 1339-1351, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35469116

RESUMEN

Recent studies using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium-based contrast agents (GBCA) have demonstrated subtle blood-brain barrier (BBB) leaks in the human brain during normal aging, in individuals with age-related cognitive dysfunction, genetic risk for Alzheimer's disease (AD), mild cognitive impairment, early AD, cerebral small vessel disease (SVD), and other neurodegenerative disorders. In these neurological conditions, the BBB leaks, quantified by the unidirectional BBB GBCA tracer's constant Ktrans maps, are typically orders of magnitude lower than in brain tumors, after stroke and/or during relapsing episodes of multiple sclerosis. This puts extra challenges for the DCE-MRI technique by pushing calculations towards its lower limits of detectability. In addition, presently, there are no standardized multivendor protocols or evidence of repeatability and reproducibility. Nevertheless, subtle BBB leaks may critically contribute to the pathophysiology of cognitive impairment and dementia associated with AD or SVD, and therefore, efforts to improve sensitivity of detection, reliability, and reproducibility are warranted. A larger number of participants scanned by different MR scanners at different clinical sites are sometimes required to detect differences in BBB integrity between control and at-risk groups, which impose additional challenges. Here, we focus on these new challenges and propose some approaches to normalize and harmonize DCE data between different scanners. In brief, we recommend specific regions to be used for the tracer's vascular input function and DCE data processing and how to find and correct negative Ktrans values that are physiologically impossible. We hope this information will prove helpful to new investigators wishing to study subtle BBB damage in neurovascular and neurodegenerative conditions and in the aging human brain.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Envejecimiento , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Medios de Contraste , Humanos , Reproducibilidad de los Resultados
15.
Proc Natl Acad Sci U S A ; 119(15): e2113310119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377817

RESUMEN

Gestational maternal immune activation (MIA) in mice induces persistent brain microglial activation and a range of neuropathologies in the adult offspring. Although long-term phenotypes are well documented, how MIA in utero leads to persistent brain inflammation is not well understood. Here, we found that offspring of mothers treated with polyriboinosinic­polyribocytidylic acid [poly(I:C)] to induce MIA at gestational day 13 exhibit blood­brain barrier (BBB) dysfunction throughout life. Live MRI in utero revealed fetal BBB hyperpermeability 2 d after MIA. Decreased pericyte­endothelium coupling in cerebral blood vessels and increased microglial activation were found in fetal and 1- and 6-mo-old offspring brains. The long-lasting disruptions result from abnormal prenatal BBB formation, driven by increased proliferation of cyclooxygenase-2 (COX2; Ptgs2)-expressing microglia in fetal brain parenchyma and perivascular spaces. Targeted deletion of the Ptgs2 gene in fetal myeloid cells or treatment with the inhibitor celecoxib 24 h after immune activation prevented microglial proliferation and disruption of BBB formation and function, showing that prenatal COX2 activation is a causal pathway of MIA effects. Thus, gestational MIA disrupts fetal BBB formation, inducing persistent BBB dysfunction, which promotes microglial overactivation and behavioral alterations across the offspring life span. Taken together, the data suggest that gestational MIA disruption of BBB formation could be an etiological contributor to neuropsychiatric disorders.


Asunto(s)
Barrera Hematoencefálica , Ciclooxigenasa 2 , Encefalitis , Intercambio Materno-Fetal , Microglía , Efectos Tardíos de la Exposición Prenatal , Animales , Barrera Hematoencefálica/anomalías , Barrera Hematoencefálica/fisiopatología , Celecoxib/farmacología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Encefalitis/inmunología , Femenino , Eliminación de Gen , Intercambio Materno-Fetal/inmunología , Ratones , Microglía/enzimología , Poli I-C/inmunología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología
16.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34846535

RESUMEN

Subcortical white matter (WM) stroke accounts for 25% of all strokes and is the second leading cause of dementia. Despite such clinical importance, we still do not have an effective treatment for ischemic WM stroke, and the mechanisms of WM postischemic neuroprotection remain elusive. 3K3A-activated protein C (APC) is a signaling-selective analogue of endogenous blood protease APC that is currently in development as a neuroprotectant for ischemic stroke patients. Here, we show that 3K3A-APC protects WM tracts and oligodendrocytes from ischemic injury in the corpus callosum in middle-aged mice by activating protease-activated receptor 1 (PAR1) and PAR3. We show that PAR1 and PAR3 were also required for 3K3A-APC's suppression of post-WM stroke microglia and astrocyte responses and overall improvement in neuropathologic and functional outcomes. Our data provide new insights into the neuroprotective APC pathway in the WM and illustrate 3K3A-APC's potential for treating WM stroke in humans, possibly including multiple WM strokes that result in vascular dementia.


Asunto(s)
Cuerpo Calloso/metabolismo , Isquemia/metabolismo , Oligodendroglía/metabolismo , Proteína C/metabolismo , Sustancia Blanca/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Cuerpo Calloso/efectos de los fármacos , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Fibrinolíticos/metabolismo , Fibrinolíticos/farmacología , Humanos , Isquemia/fisiopatología , Isquemia/prevención & control , Masculino , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Proteína C/farmacología , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/prevención & control
17.
Front Immunol ; 12: 785519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868068

RESUMEN

Cerebrovascular pathologies are commonly associated with dementia. Because air pollution increases arterial disease in humans and rodent models, we hypothesized that air pollution would also contribute to brain vascular dysfunction. We examined the effects of exposing mice to nanoparticulate matter (nPM; aerodynamic diameter ≤200 nm) from urban traffic and interactions with cerebral hypoperfusion. C57BL/6 mice were exposed to filtered air or nPM with and without bilateral carotid artery stenosis (BCAS) and analyzed by multiparametric MRI and histochemistry. Exposure to nPM alone did not alter regional cerebral blood flow (CBF) or blood brain barrier (BBB) integrity. However, nPM worsened the white matter hypoperfusion (decreased CBF on DSC-MRI) and exacerbated the BBB permeability (extravascular IgG deposits) resulting from BCAS. White matter MRI diffusion metrics were abnormal in mice subjected to cerebral hypoperfusion and worsened by combined nPM+BCAS. Axonal density was reduced equally in the BCAS cohorts regardless of nPM status, whereas nPM exposure caused demyelination in the white matter with or without cerebral hypoperfusion. In summary, air pollution nPM exacerbates cerebrovascular pathology and demyelination in the setting of cerebral hypoperfusion, suggesting that air pollution exposure can augment underlying cerebrovascular contributions to cognitive loss and dementia in susceptible elderly populations.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Estenosis Carotídea/complicaciones , Disfunción Cognitiva/diagnóstico , Enfermedades Desmielinizantes/diagnóstico , Material Particulado/efectos adversos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Circulación Cerebrovascular/efectos de los fármacos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Índice de Severidad de la Enfermedad , Emisiones de Vehículos , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología
18.
Environ Health Perspect ; 129(8): 87006, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34424052

RESUMEN

BACKGROUND: Exposure to ambient air pollution particulate matter (PM) is associated with increased risk of dementia and accelerated cognitive loss. Vascular contributions to cognitive impairment are well recognized. Chronic cerebral hypoperfusion (CCH) promotes neuroinflammation and blood-brain barrier weakening, which may augment neurotoxic effects of PM. OBJECTIVES: This study examined interactions of nanoscale particulate matter (nPM; fine particulate matter with aerodynamic diameter ≤200 nm) and CCH secondary to bilateral carotid artery stenosis (BCAS) in a murine model to produce white matter injury. Based on other air pollution interactions, we predicted synergies of nPM with BCAS. METHODS: nPM was collected using a particle sampler near a Los Angeles, California, freeway. Mice were exposed to 10 wk of reaerosolized nPM or filtered air (FA) for 150 h. CCH was induced by BCAS surgery. Mice (C57BL/6J males) were randomized to four exposure paradigms: a) FA, b) nPM, c) FA + BCAS, and d) nPM + BCAS. Behavioral outcomes, white matter injury, glial cell activation, inflammation, and oxidative stress were assessed. RESULTS: The joint nPM + BCAS group exhibited synergistic effects on white matter injury (2.3× the additive nPM and FA + BCAS scores) with greater loss of corpus callosum volume on T2 magnetic resonance imaging (MRI) (30% smaller than FA group). Histochemical analyses suggested potential microglial-specific inflammatory responses with synergistic effects on corpus callosum C5 immunofluorescent density and whole brain nitrate concentrations (2.1× and 3.9× the additive nPM and FA + BCAS effects, respectively) in the joint exposure group. Transcriptomic responses (RNA-Seq) showed greater impact of nPM + BCAS than individual additive effects, consistent with changes in proinflammatory pathways. Although nPM exposure alone did not alter working memory, the nPM + BCAS cohort demonstrated impaired working memory when compared to the FA + BCAS group. DISCUSSION: Our data suggest that nPM and CCH contribute to white matter injury in a synergistic manner in a mouse model. Adverse neurological effects may be aggravated in a susceptible population exposed to air pollution. https://doi.org/10.1289/EHP8792.


Asunto(s)
Contaminación del Aire , Sustancia Blanca , Contaminación del Aire/efectos adversos , Animales , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Material Particulado/toxicidad
19.
Neuroscience ; 474: 14-29, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400249

RESUMEN

Alzheimer's disease (AD) and cerebral small vessel disease (cSVD) are the two main causes of dementia with blood-brain barrier (BBB) breakdown being a common contributor. Recent advances in neuroimaging techniques offer new possibilities to understand how the brain functions in health and disease. This includes methods such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) which allows the detection of subtle regional changes in the BBB integrity. The purpose of this work is to provide a review on the recent DCE-MRI findings of subtle BBB leakage focusing on cSVD and AD, including both clinical and pre-clinical studies. Despite being widely used and well-established, we also highlight some of the DCE-MRI challenges and pitfalls faced in the context of dementia inherent to the subtle nature of BBB impairment.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades de los Pequeños Vasos Cerebrales , Enfermedad de Alzheimer/diagnóstico por imagen , Barrera Hematoencefálica/diagnóstico por imagen , Medios de Contraste , Humanos , Imagen por Resonancia Magnética , Permeabilidad
20.
Am J Pathol ; 191(11): 1917-1931, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34329605

RESUMEN

Prevalence of dementia continues to increase because of the aging population and limited treatment options. Cerebral small vessel disease and Alzheimer disease are the two most common causes of dementia with vascular dysfunction being a large component of both their pathophysiologies. The neurogliovascular unit, in particular the blood-brain barrier (BBB), is required for maintaining brain homeostasis. A complex interaction exists among the endothelial cells, which line the blood vessels and pericytes, which surround them in the neurogliovascular unit. Disruption of the BBB in dementia precipitates cognitive decline. This review highlights how dysfunction of the endothelial-pericyte crosstalk contributes to dementia, and focuses on cerebral small vessel disease and Alzheimer disease. It also examines loss of pericyte coverage and subsequent downstream changes. Furthermore, it examines how disruption of the intimate crosstalk between endothelial cells and pericytes leads to alterations in cerebral blood flow, transcription, neuroinflammation, and transcytosis, contributing to breakdown of the BBB. Finally, this review illustrates how cumulation of loss of endothelial-pericyte crosstalk is a major driving force in dementia pathology.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Comunicación Celular/fisiología , Demencia/metabolismo , Células Endoteliales/metabolismo , Pericitos/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/patología , Demencia/patología , Células Endoteliales/patología , Humanos , Pericitos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...