Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Autism ; 10: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30962870

RESUMEN

Background: Mutations of the SCN2A gene encoding a voltage-gated sodium channel alpha-II subunit Nav1.2 are associated with neurological disorders such as epilepsy, autism spectrum disorders, intellectual disability, and schizophrenia. However, causal relationships and pathogenic mechanisms underlying these neurological defects, especially social and psychiatric features, remain to be elucidated. Methods: We investigated the behavior of mice with a conventional or conditional deletion of Scn2a in a comprehensive test battery including open field, elevated plus maze, light-dark box, three chambers, social dominance tube, resident-intruder, ultrasonic vocalization, and fear conditioning tests. We further monitored the effects of the positive allosteric modulator of AMPA receptors CX516 on these model mice. Results: Conventional heterozygous Scn2a knockout mice (Scn2aKO/+) displayed novelty-induced exploratory hyperactivity and increased rearing. The increased vertical activity was reproduced by heterozygous inactivation of Scn2a in dorsal-telencephalic excitatory neurons but not in inhibitory neurons. Moreover, these phenotypes were rescued by treating Scn2aKO/+ mice with CX516. Additionally, Scn2aKO/+ mice displayed mild social behavior impairment, enhanced fear conditioning, and deficient fear extinction. Neuronal activity was intensified in the medial prefrontal cortex of Scn2aKO/+ mice, with an increase in the gamma band. Conclusions: Scn2aKO/+ mice exhibit a spectrum of phenotypes commonly observed in models of schizophrenia and autism spectrum disorder. Treatment with the CX516 ampakine, which ameliorates hyperactivity in these mice, could be a potential therapeutic strategy to rescue some of the disease phenotypes.


Asunto(s)
Ansiedad/genética , Trastorno del Espectro Autista/genética , Memoria , Canal de Sodio Activado por Voltaje NAV1.2/genética , Agitación Psicomotora/genética , Conducta Social , Animales , Ansiedad/tratamiento farmacológico , Trastorno del Espectro Autista/tratamiento farmacológico , Dioxoles/uso terapéutico , Ritmo Gamma , Haploinsuficiencia , Masculino , Moduladores del Transporte de Membrana/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Fenotipo , Piperidinas/uso terapéutico , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Agitación Psicomotora/tratamiento farmacológico
2.
Commun Biol ; 1: 96, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30175250

RESUMEN

Mutations in the SCN2A gene encoding a voltage-gated sodium channel Nav1.2 are associated with epilepsies, intellectual disability, and autism. SCN2A gain-of-function mutations cause early-onset severe epilepsies, while loss-of-function mutations cause autism with milder and/or later-onset epilepsies. Here we show that both heterozygous Scn2a-knockout and knock-in mice harboring a patient-derived nonsense mutation exhibit ethosuximide-sensitive absence-like seizures associated with spike-and-wave discharges at adult stages. Unexpectedly, identical seizures are reproduced and even more prominent in mice with heterozygous Scn2a deletion specifically in dorsal-telencephalic (e.g., neocortical and hippocampal) excitatory neurons, but are undetected in mice with selective Scn2a deletion in inhibitory neurons. In adult cerebral cortex of wild-type mice, most Nav1.2 is expressed in excitatory neurons with a steady increase and redistribution from proximal (i.e., axon initial segments) to distal axons. These results indicate a pivotal role of Nav1.2 haplodeficiency in excitatory neurons in epilepsies of patients with SCN2A loss-of-function mutations.

3.
Nat Neurosci ; 21(7): 996-1003, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29867081

RESUMEN

An accumulating body of experimental evidence has implicated hippocampal replay occurring within sharp wave ripples (SPW-Rs) as crucial for learning and memory in healthy subjects. This raises speculation that neurological disorders impairing memory disrupt either SPW-Rs or their underlying neuronal activity. We report that mice heterozygous for the gene Scn2a, a site of frequent de novo mutations in humans with intellectual disability, displayed impaired spatial memory. While we observed no changes during encoding, to either single place cells or cell assemblies, we identified abnormalities restricted to SPW-R episodes that manifest as decreased cell assembly reactivation strengths and truncated hippocampal replay sequences. Our results suggest that alterations to hippocampal replay content may underlie disease-associated memory deficits.


Asunto(s)
Hipocampo/fisiopatología , Trastornos de la Memoria/genética , Memoria a Corto Plazo/fisiología , Canal de Sodio Activado por Voltaje NAV1.2/genética , Memoria Espacial/fisiología , Potenciales de Acción/fisiología , Animales , Conducta Animal/fisiología , Heterocigoto , Masculino , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Noqueados , Vías Nerviosas/fisiopatología , Neuronas/fisiología , Sueño/fisiología
5.
Cell ; 164(3): 499-511, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824658

RESUMEN

The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown. Here, we show that SWELL1 and up to four other LRRC8 subunits assemble into heterogeneous complexes of ∼800 kDa. When reconstituted into bilayers, LRRC8 complexes are sufficient to form anion channels activated by osmolality gradients. In bilayers, as well as in cells, the single-channel conductance of the complexes depends on the LRRC8 composition. Finally, low ionic strength (Γ) in the absence of an osmotic gradient activates the complexes in bilayers. These data demonstrate that LRRC8 proteins together constitute the VRAC pore and that hypotonic stress can activate VRAC through a decrease in cytoplasmic Γ.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Células HeLa , Humanos , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ósmosis
6.
J Biol Chem ; 291(6): 2931-7, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26627826

RESUMEN

KCNQ (voltage-gated K(+) channel family 7 (Kv7)) channels control cellular excitability and underlie the K(+) current sensitive to muscarinic receptor signaling (the M current) in sympathetic neurons. Here we show that the novel anti-epileptic drug retigabine (RTG) modulates channel function of pore-only modules (PMs) of the human Kv7.2 and Kv7.3 homomeric channels and of Kv7.2/3 heteromeric channels by prolonging the residence time in the open state. In addition, the Kv7 channel PMs are shown to recapitulate the single-channel permeation and pharmacological specificity characteristics of the corresponding full-length proteins in their native cellular context. A mutation (W265L) in the reconstituted Kv7.3 PM renders the channel insensitive to RTG and favors the conductive conformation of the PM, in agreement to what is observed when the Kv7.3 mutant is heterologously expressed. On the basis of the new findings and homology models of the closed and open conformations of the Kv7.3 PM, we propose a structural mechanism for the gating of the Kv7.3 PM and for the site of action of RTG as a Kv7.2/Kv7.3 K(+) current activator. The results validate the modular design of human Kv channels and highlight the PM as a high-fidelity target for drug screening of Kv channels.


Asunto(s)
Anticonvulsivantes/química , Carbamatos/química , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ3/química , Modelos Moleculares , Mutación Missense , Fenilendiaminas/química , Sustitución de Aminoácidos , Anticonvulsivantes/farmacología , Carbamatos/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Fenilendiaminas/farmacología
7.
Elife ; 42015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26001275

RESUMEN

Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ~3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function.


Asunto(s)
Canales Iónicos/agonistas , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones
8.
Trends Mol Med ; 20(11): 602-3, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25242227

RESUMEN

Botulinum neurotoxin causes botulism, and the only effective antidote is the antitoxin. Botulinum neurotoxins are disulfide linked di-chain proteins encompassing a light chain Zn2+-protease that is translocated by a heavy chain channel from the synaptic vesicle lumen into the neuronal cytosol where it acts. Protease release from the channel is required for toxicity. The Thioredoxin Reductase-Thioredoxin system cleaves the interchain disulfide, and its inhibition prevents neurotoxicity, and may provide novel strategies for chemoprophylaxis and therapy.


Asunto(s)
Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/toxicidad , Oxidación-Reducción , Botulismo/tratamiento farmacológico , Botulismo/prevención & control , Humanos , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo
9.
J Biol Chem ; 289(7): 4233-43, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24362039

RESUMEN

The crystal structure of the sensorless pore module of a voltage-gated K(+) (Kv) channel showed that lipids occupy a crevice between subunits. We asked if individual lipid monolayers of the bilayer embody independent modules linked to channel gating modulation. Functional studies using single channel current recordings of the sensorless pore module reconstituted in symmetric and asymmetric lipid bilayers allowed us to establish the deterministic role of lipid headgroup on gating. We discovered that individual monolayers with headgroups that coat the bilayer-aqueous interface with hydroxyls stabilize the channel open conformation. The hydroxyl need not be at a terminal position and the effect is not dependent on the presence of phosphate or net charge on the lipid headgroup. Asymmetric lipid bilayers allowed us to determine that phosphoglycerides with glycerol or inositol on the extracellular facing monolayer stabilize the open conformation of the channel. This indirect effect is attributed to a change in water structure at the membrane interface. By contrast, inclusion of the positively charged lysyl-dioleoyl-phosphatidylglycerol exclusively on the cytoplasmic facing monolayer of the bilayer increases drastically the probability of finding the channel open. Such modulation is mediated by a π-cation interaction between Phe-19 of the pore module and the lysyl moiety anchored to the phosphatidylglycerol headgroup. The new findings imply that the specific chemistry of the lipid headgroup and its selective location in either monolayer of the bilayer dictate the stability of the open conformation of a Kv pore module in the absence of voltage-sensing modules.


Asunto(s)
Membrana Dobles de Lípidos/química , Modelos Químicos , Canales de Potasio con Entrada de Voltaje/química , Membrana Dobles de Lípidos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica
10.
J Biol Chem ; 288(23): 16619-16628, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23609443

RESUMEN

Voltage-gated K(+) (Kv) channels are molecular switches that sense membrane potential and in response open to allow K(+) ions to diffuse out of the cell. In these proteins, sensor and pore belong to two distinct structural modules. We previously showed that the pore module alone is a robust yet dynamic structural unit in lipid membranes and that it senses potential and gates open to conduct K(+) with unchanged fidelity. The implication is that the voltage sensitivity of K(+) channels is not solely encoded in the sensor. Given that the coupling between sensor and pore remains elusive, we asked whether it is then possible to convert a pore module characterized by brief openings into a conductor with a prolonged lifetime in the open state. The strategy involves selected probes targeted to the filter gate of the channel aiming to modulate the probability of the channel being open assayed by single channel recordings from the sensorless pore module reconstituted in lipid bilayers. Here we show that the premature closing of the pore is bypassed by association of the filter gate with two novel open conformation stabilizers: an antidepressant and a peptide toxin known to act selectively on Kv channels. Such stabilization of the conductive conformation of the channel is faithfully mimicked by the covalent attachment of fluorescein at a cysteine residue selectively introduced near the filter gate. This modulation prolongs the occupancy of permeant ions at the gate. It is this longer embrace between ion and gate that we conjecture underlies the observed stabilization of the conductive conformation. This study provides a new way of thinking about gating.


Asunto(s)
Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/química , Canales de Potasio con Entrada de Voltaje/química , Animales , Antidepresivos/química , Humanos , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Estabilidad Proteica
11.
Toxicon ; 75: 101-7, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23396042

RESUMEN

Clostridium botulinum neurotoxin (BoNT) is a multi-domain protein made up of the approximately 100 kDa heavy chain (HC) and the approximately 50 kDa light chain (LC). The HC can be further subdivided into two halves: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). We have investigated the minimal requirements for channel activity and LC translocation. We utilize a cellular protection assay and a single channel/single molecule LC translocation assay to characterize in real time the channel and chaperone activities of BoNT/A truncation constructs in Neuro 2A cells. The unstructured, elongated belt region of the TD is demonstrated to be dispensable for channel activity, although may be required for productive LC translocation. We show that the RBD is not necessary for channel activity or LC translocation, however it dictates the pH threshold of channel insertion into the membrane. These findings indicate that each domain functions as a chaperone for the others in addition to their individual functions, working in concert to achieve productive intoxication.


Asunto(s)
Toxinas Botulínicas/química , Chaperonas Moleculares/metabolismo , Neurotoxinas/química , Animales , Armas Biológicas , Línea Celular , Clostridium botulinum/química , Concentración de Iones de Hidrógeno , Ratones , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
12.
J Biol Chem ; 287(51): 43063-70, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23095758

RESUMEN

Voltage-gated K(+) channels underlie the electrical excitability of cells. Each subunit of the functional tetramer consists of the tandem fusion of two modules, an N-terminal voltage-sensor and a C-terminal pore. To investigate how sensor coupling to the pore generates voltage-dependent channel opening, we solved the crystal structure and characterized the function of a voltage-gated K(+) channel pore in a lipid membrane. The structure of a functional channel in a membrane environment at 3.1 Å resolution establishes an unprecedented connection between channel structure and function. The structure is unique in delineating an ion-occupied ready to conduct selectivity filter, a confined aqueous cavity, and a closed activation gate, embodying a dynamic entity trapped in an unstable closed state.


Asunto(s)
Membrana Dobles de Lípidos/química , Listeria monocytogenes/metabolismo , Lípidos de la Membrana/química , Canales de Potasio con Entrada de Voltaje/química , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Activación del Canal Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica
13.
Proc Natl Acad Sci U S A ; 109(42): 16917-22, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23019583

RESUMEN

Voltage-gated K(+) (Kv) channels are tetrameric assemblies in which each modular subunit consists of a voltage sensor and a pore domain. KvLm, the voltage-gated K(+) channel from Listeria monocytogenes, differs from other Kv channels in that its voltage sensor contains only three out of the eight charged residues previously implicated in voltage gating. Here, we ask how many sensors are required to produce a functional Kv channel by investigating heterotetramers comprising combinations of full-length KvLm (FL) and its sensorless pore module. KvLm heterotetramers were produced by cell-free expression, purified by electrophoresis, and shown to yield functional channels after reconstitution in droplet interface bilayers. We studied the properties of KvLm channels with zero, one, two, three, and four voltage sensors. Three sensors suffice to promote channel opening with FL(4)-like voltage dependence at depolarizing potentials, but all four sensors are required to keep the channel closed during membrane hyperpolarization.


Asunto(s)
Listeria monocytogenes/química , Modelos Moleculares , Canales de Potasio con Entrada de Voltaje/química , Conformación Proteica , Clonación Molecular , Electroforesis , Escherichia coli , Técnicas de Placa-Clamp
14.
Nature ; 483(7388): 176-81, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22343900

RESUMEN

Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Conductividad Eléctrica , Células HEK293 , Células HeLa , Humanos , Canales Iónicos/genética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Porosidad , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
15.
J Biol Chem ; 287(3): 1657-61, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22158863

RESUMEN

Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Canales Iónicos/metabolismo , Chaperonas Moleculares/metabolismo , Fuerza Protón-Motriz , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Botulismo/genética , Botulismo/metabolismo , Línea Celular , Humanos , Canales Iónicos/química , Canales Iónicos/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mapeo Peptídico/métodos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
16.
Annu Rev Biochem ; 79: 591-617, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20233039

RESUMEN

Botulinum neurotoxin (BoNT), the causative agent of botulism, is acknowledged to be the most poisonous protein known. BoNT proteases disable synaptic vesicle exocytosis by cleaving their cytosolic SNARE (soluble NSF attachment protein receptor) substrates. BoNT is a modular nanomachine: an N-terminal Zn(2+)-metalloprotease, which cleaves the SNAREs; a central helical protein-conducting channel, which chaperones the protease across endosomes; and a C-terminal receptor-binding module, consisting of two subdomains that determine target specificity by binding to a ganglioside and a protein receptor on the cell surface and triggering endocytosis. For BoNT, functional complexity emerges from its modular design and the tight interplay between its component modules--a partnership with consequences that surpass the simple sum of the individual component's action. BoNTs exploit this design at each step of the intoxication process, thereby achieving an exquisite toxicity. This review summarizes current knowledge on the structure of individual modules and presents mechanistic insights into how this protein machine evolved to this level of sophistication. Understanding the design principles underpinning the function of such a dynamic modular protein remains a challenging task.


Asunto(s)
Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Toxinas Botulínicas/toxicidad , Endocitosis , Neurotoxinas , Estructura Terciaria de Proteína
18.
Proc Natl Acad Sci U S A ; 106(5): 1330-5, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19164566

RESUMEN

Clostridium botulinum neurotoxin (BoNT) is the causative agent of botulism, a neuroparalytic disease. We describe here a semisynthetic strategy to identify inhibitors based on toosendanin, a traditional Chinese medicine reported to protect from BoNT intoxication. Using a single molecule assay of BoNT serotypes A and E light chain (LC) translocation through the heavy chain (HC) channel in neurons, we discovered that toosendanin and its tetrahydrofuran analog selectively arrest the LC translocation step of intoxication with subnanomolar potency, and increase the unoccluded HC channel propensity to open with micromolar efficacy. The inhibitory profile on LC translocation is accurately recapitulated in 2 different BoNT intoxication assays, namely the mouse protection and the primary rat spinal cord cell assays. Toosendanin has an unprecedented dual mode of action on the protein-conducting channel acting as a cargo-dependent inhibitor of translocation and as cargo-free channel activator. These results imply that the bimodal modulation by toosendanin depends on the dynamic interactions between channel and cargo, highlighting their tight interplay during the progression of LC transit across endosomes.


Asunto(s)
Toxinas Botulínicas/antagonistas & inhibidores , Animales , Toxinas Botulínicas/metabolismo , Células Cultivadas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Femenino , Ratones , Técnicas de Placa-Clamp , Transporte de Proteínas , Ratas , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología
19.
Toxicon ; 54(5): 565-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19111565

RESUMEN

Clostridial botulinum neurotoxins (BoNTs) inhibit synaptic exocytosis; intoxication requires the di-chain protein to undergo conformational changes in response to pH and redox gradients across the endosomal membrane with consequent formation of a protein-conducting channel by the heavy chain (HC) that translocates the light chain (LC) protease into the cytosol, colocalizing it with the substrate SNARE proteins. We investigate the dynamics of protein translocation across membranes using a sensitive single-molecule assay to track translocation events with millisecond resolution on lipid bilayers and on membrane patches of Neuro 2A cells. Translocation of BoNT/A LC by the HC is observed in real time as changes of channel conductance: the channel is occluded by the light chain during transit, and open after completion of translocation and release of cargo, acting intriguingly similar to the protein-conducting/translocating channels of the endoplasmic reticulum, mitochondria, and chloroplasts. Our findings support the notion of an interdependent, tight interplay between the HC transmembrane chaperone and the LC cargo that prevents LC aggregation and dictates the productive passage of cargo through the channel and completion of translocation. The protein-conducting channel of BoNT, a key element in the process of neurotoxicity, emerges therefore as a target for antidote discovery - a novel paradigm of paramount significance to health science and biodefense.


Asunto(s)
Toxinas Botulínicas/metabolismo , Canales Iónicos/metabolismo , Neurotoxinas/metabolismo , Proteínas SNARE/metabolismo , Membranas Sinápticas/metabolismo , Animales , Toxinas Botulínicas/farmacocinética , Endocitosis , Exocitosis , Humanos , Canales Iónicos/efectos de los fármacos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacocinética , Neurotoxinas/farmacocinética , Unión Proteica , Transporte de Proteínas , Proteínas SNARE/efectos de los fármacos , Transducción de Señal , Relación Estructura-Actividad , Membranas Sinápticas/efectos de los fármacos
20.
PLoS Pathog ; 4(12): e1000245, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19096517

RESUMEN

Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The approximately 50 kDa light chain (LC) protease is translocated into the cytosol by the approximately 100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication.


Asunto(s)
Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Péptido Hidrolasas/metabolismo , Toxinas Botulínicas Tipo A/química , Células Cultivadas , Sistemas de Liberación de Medicamentos/métodos , Activación Enzimática , Eliminación de Gen , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Canales Iónicos/fisiología , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiología , Unión Proteica/genética , Ingeniería de Proteínas , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...