RESUMEN
Sepsis is a potentially fatal clinical condition that results from an immune imbalance in the host during an infection. It presents systemic alterations due to excessive activation of pro-inflammatory mediators that contribute to inflammation, formation of reactive species, and tissue damage. Anti-inflammatory mediators are then extensively activated to regulate this process, leading to immune exhaustion and, consequently, immunosuppression of the host. Considering the biological activities of the nutraceutical Agaricus brasiliensis (A. brasiliensis), such as immunomodulatory, antioxidant, and antitumor activities, the present study investigated the therapeutic potential of the lipid fraction of A. brasiliensis (LF) in a model of lethal sepsis in mice (Mus musculus), induced by cecal ligation and perforation (CLP). The results showed that treatment of septic animals with LF or LF associated with ertapenem (LF-Erta) reduced systemic inflammation, promoting improvement in clinical parameters and increased survival. The data show a reduction in pro-inflammatory and oxidative stress markers, regulation of the anti-inflammatory response and oxidizing agents, and increased bacterial clearance in the peritoneal cavity and liver. Thus, it can be concluded that LF as a treatment, and in conjunction with antibiotic therapy, has shown promising effects as a hepatoprotective, antioxidant, antimicrobial, and immunomodulatory agent.
RESUMEN
Linalool-rich Rosewood oil (Aniba rosaeodora Ducke) is a natural compound widely used in perfumery industry. Evidence suggests that linalool exerts antidepressant and anxiolytic effects. Conversely, ethanol binge drinking (i.e., intermittent and episodic consumption) during adolescence elicits neurobehavioral alterations associated with brain damage. Here, we investigated whether linalool-rich Rosewood oil administration can improve the emotional and molecular impairments associated with ethanol binge-like exposure during adolescence in female rats. Rosewood oil was obtained by hydrodistillation and posteriorly analyzed. Adolescent female Wistar rats received four-cycles of ethanol binge-like pattern (3â¯g/kg/day, 3 days on/4 days off) and daily Rosewood oil (35â¯mg/kg, intranasally) for 28 days. Twenty-four hours after treatments, it was evaluated the impact of ethanol exposure and Rosewood oil treatment on the putative emotional impairments assessed on the splash and forced swimming tests, as well as the levels of brain-derived neurotrophic factor (BDNF), S100B, oxidative parameters, and inflammatory cytokines in prefrontal cortex and hippocampus. Results indicated that Rosewood oil intranasal administration mitigated emotional impairments induced by ethanol exposure accompanied by a marked increase in BDNF, S100B, glutathione (GSH), and antioxidant activity equivalent to Trolox (TEAC) levels in brain areas. Rosewood oil treatment also prevented the ethanol-induced increase of interleukin-1ß, interleukin-6, tumor necrosis factor α (TNF-α), and neurofilament light chain (NFL) levels. These findings provide the first evidence that Rosewood oil intranasal administration exerts protective effects against emotional and molecular impairments associated with adolescent ethanol binge-like exposure, possibly due to linalool actions triggering neurotrophic factors, rebalancing antioxidant status, and attenuating proinflammatory process.
Asunto(s)
Monoterpenos Acíclicos , Etanol , Aceites Volátiles , Ratas Wistar , Animales , Femenino , Aceites Volátiles/farmacología , Aceites Volátiles/aislamiento & purificación , Monoterpenos Acíclicos/farmacología , Ratas , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Emociones/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Citocinas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismoRESUMEN
This systematic review aimed to verify whether there is evidence of an association between apical periodontitis and the presence of systemic biomarkers. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA. For this, the acronym PECO was used; population (P) of adult humans exposed (E) to the presence of apical periodontitis, compared (C) to adult humans without apical periodontitis, and the outcome (O) of the presence of biomarkers was observed. The articles were searched in PubMed, Scopus, Web of Science, LILACS, Cochrane Library, OpenGray, and Google Scholar grey databases. Subsequently, studies were excluded based on title, abstract, and full article reading, following the eligibility criteria. The methodological quality of the selected studies was evaluated using the Newcastle-Ottawa qualifier. After exclusion, 656 studies were identified, resulting in 17 final articles that were divided into case-control, cross-sectional, and cohort studies. Eight studies were considered to have a low risk of bias, one had a medium risk of bias, and eight had a high risk of bias. In addition, 12 articles evaluated biomarkers in blood plasma, four evaluated them in saliva, and only one evaluated them in gingival crevicular fluid. The results of these studies indicated an association between apical periodontitis and the systemic presence of biomarkers. These markers are mainly related to inflammation, such as interleukins IL-1, IL-2, and IL-6, oxidative markers, such as nitric oxide and superoxide anions, and immunoglobulins IgG and IgM. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier (CRD42023493959).
Asunto(s)
Biomarcadores , Periodontitis Periapical , Humanos , Biomarcadores/sangre , Periodontitis Periapical/sangre , Periodontitis Periapical/metabolismoRESUMEN
Caffeic acid (CA) exhibits a myriad of biological activities including cardioprotective action, antioxidant, antitumor, anti-inflammatory, and antimicrobial properties. On the other hand, CA presents low water solubility and poor bioavailability, which have limited its use for therapeutic applications. The objective of this study was to develop a nanohybrid of zinc basic salts (ZBS) and chitosan (Ch) containing CA (ZBS-CA/Ch) and evaluate its anti-edematogenic and antioxidant activity in dextran and carrageenan-induced paw edema model. The samples were obtained by coprecipitation method and characterized by X-ray diffraction, Fourier transform infrared (FT-IR), scanning electron microscope (SEM) and UV-visible spectroscopy. The release of caffeate anions from ZBS-CA and ZBS-CA/Ch is pH-dependent and is explained by a pseudo-second order kinetics model, with a linear correlation coefficient of R2 ≥ 0.99 at pH 4.8 and 7.4. The in vivo pharmacological assays showed excellent anti-edematogenic and antioxidant action of the ZBS-CA/Ch nanoparticle with slowly releases of caffeate anions in the tissue, leading to a prolongation of CA-induced anti-edematogenic and anti-inflammatory activities, as well as improving its inhibition or sequestration antioxidant action toward reactive species. Overall, this study highlighted the importance of ZBS-CA/Ch as an optimal drug carrier.
Asunto(s)
Quitosano , Humanos , Quitosano/química , Preparaciones de Acción Retardada/química , Espectroscopía Infrarroja por Transformada de Fourier , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Edema/patología , Zinc/químicaRESUMEN
Higher endotoxin in the circulation may indicate a compromised state of host immune response against coinfections in severe COVID-19 patients. We evaluated the inflammatory response of monocytes from COVID-19 patients after lipopolysaccharide (LPS) challenge. Whole blood samples of healthy controls, patients with mild COVID-19, and patients with severe COVID-19 were incubated with LPS for 2 h. Severe COVID-19 patients presented higher LPS and sCD14 levels in the plasma than healthy controls and mild COVID-19 patients. In non-stimulated in vitro condition, severe COVID-19 patients presented higher inflammatory cytokines and PGE-2 levels and CD14 + HLA-DRlow monocytes frequency than controls. Moreover, severe COVID-19 patients presented higher NF-κB p65 phosphorylation in CD14 + HLA-DRlow, as well as higher expression of TLR-4 and NF-κB p65 phosphorylation in CD14 + HLA-DRhigh compared to controls. The stimulation of LPS in whole blood of severe COVID-19 patients leads to lower cytokine production but higher PGE-2 levels compared to controls. Endotoxin challenge with both concentrations reduced the frequency of CD14 + HLA-DRlow in severe COVID-19 patients, but the increases in TLR-4 expression and NF-κB p65 phosphorylation were more pronounced in both CD14 + monocytes of healthy controls and mild COVID-19 patients compared to severe COVID-19 group. We conclude that acute SARS-CoV-2 infection is associated with diminished endotoxin response in monocytes. KEY MESSAGES: Severe COVID-19 patients had higher levels of LPS and systemic IL-6 and TNF-α. Severe COVID-19 patients presented higher CD14+HLA-DRlow monocytes. Increased TLR-4/NF-κB axis was identified in monocytes of severe COVID-19. Blunted production of cytokines after whole blood LPS stimulation in severe COVID-19. Lower TLR-4/NF-κB activation in monocytes after LPS stimulation in severe COVID-19.
Asunto(s)
COVID-19 , Monocitos , Humanos , Monocitos/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Tolerancia a Endotoxinas , Lipopolisacáridos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antígenos HLA-DR/metabolismo , Receptores de Lipopolisacáridos/metabolismoRESUMEN
The tolerable aluminum (Al) intake levels for humans are constantly under review by regulatory agencies due to novel pre-clinical evidence on the neurotoxicity of prolonged Al exposure; however, little is known about the effects of Al on the spinal cord. This study aimed to investigate potential adverse effects on both spinal cord and systemic biochemical balance after prolonged exposure to a low dose of Al. Twenty adult rats were distributed in the control (distilled water) and exposed group (8.3 mg of AlCl3/kg/day). After 60 days, both blood and spinal cord samples were collected for oxidative stress and proteomic analyses. In plasma and erythrocytes, glutathione level was not different between groups; however, exposure to AlCl3 significantly decreased glutathione level in the spinal cord. Thiobarbituric acid reactive substances levels in the plasma and spinal cord of animals from the control group were significantly lower than those animals exposed to AlCl3. Exposure to AlCl3 significantly modulated the expression of proteins associated with the cell cycle, stimulus-response, cytoskeleton, nervous system regulation, protein activity, and synaptic signaling. Therefore, prolonged exposure to a low dose of Al triggered oxidative stress and proteomic changes that may affect spinal cord homeostasis.
Asunto(s)
Aluminio , Proteómica , Humanos , Ratas , Animales , Aluminio/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Glutatión/metabolismo , Médula Espinal/metabolismoRESUMEN
Alcohol consumption is spread worldwide and can lead to an abuse profile associated with severe health problems. Adolescents are more susceptible to addiction and usually consume ethanol in a binge drinking pattern. This form of consumption can lead to cognitive and emotional disorders, however scarce studies have focused on long-term hazardous effects following withdrawal periods after binge drinking in adolescents. Thus, the present study aims at investigating whether behavioral and cognitive changes persist until mid and late adulthood. Female Wistar rats (9-10 animals/group) received intragastric administration of four cycles of ethanol binge-like pattern (3.0 g/kg/day, 20% w/v; 3 days-on/4 days-off) from 35th to 58th days old, followed withdrawal checkpoints 1 day, 30 days, and 60 days. At each checkpoint period, behavioral tests of open field, object recognition test, elevated plus maze, and forced swimming test were performed, and blood and hippocampus were collected for oxidative biochemistry and brain-derived neurotrophic factor (BDNF) levels analysis, respectively. The results demonstrated that adolescent rats exposed to binge drinking displayed anxiogenic- and depressive-like phenotype in early and midadulthood, however, anxiety-like profile persisted until late adulthood. Similarly, short-term memory was impaired in all withdrawal periods analysed, including late adult life. These behavioral data were associated with oxidative damage in midadulthood but not BDNF alterations. Taken together, the present work highlights the long-lasting emotional and cognitive alterations induced by ethanol binge drinking during adolescence, even after a long period of abstinence, which might impact adult life.
Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas , Etanol , Animales , Ratas , Femenino , Etanol/farmacología , Ratas Wistar , Consumo de Bebidas Alcohólicas , HipocampoRESUMEN
BmooMPα-I has kininogenase activity, cleaving kininogen releasing bradykinin and can hydrolyze angiotensin I at post-proline and aspartic acid positions, generating an inactive peptide. We evaluated the antihypertensive activity of BmooMPα-I in a model of two-kidney, one-clip (2K1C). Wistar rats were divided into groups: Sham, who underwent sham surgery, and 2K1C, who suffered stenosis of the right renal artery. In the second week of hypertension, we started treatment (Vehicle, BmooMPα-I and Losartan) for two weeks. We performed an electrocardiogram and blood and heart collection in the fourth week of hypertension. The 2K1C BmooMPα-I showed a reduction in blood pressure (systolic pressure: 131 ± 2 mmHg; diastolic pressure: 84 ± 2 mmHg versus 174 ± 3 mmHg; 97 ± 4 mmHg, 2K1C Vehicle, p < 0.05), improvement in electrocardiographic parameters (Heart Rate: 297 ± 4 bpm; QRS: 42 ± 0.1 ms; QT: 92 ± 1 ms versus 332 ± 6 bpm; 48 ± 0.2 ms; 122 ± 1 ms, 2K1C Vehicle, p < 0.05), without changing the hematological profile (platelets: 758 ± 67; leukocytes: 3980 ± 326 versus 758 ± 75; 4400 ± 800, 2K1C Vehicle, p > 0.05), with reversal of hypertrophy (left ventricular area: 12.1 ± 0.3; left ventricle wall thickness: 2.5 ± 0.2; septum wall thickness: 2.3 ± 0.06 versus 10.5 ± 0.3; 2.7 ± 0.2; 2.5 ± 0.04, 2K1C Vehicle, p < 0.05) and fibrosis (3.9 ± 0.2 versus 7.4 ± 0.7, 2K1C Vehicle, p < 0.05). We concluded that BmooMPα-I improved blood pressure levels and cardiac remodeling, having a cardioprotective effect.
Asunto(s)
Bothrops , Venenos de Crotálidos , Hipertensión Renovascular , Animales , Ratas , Presión Sanguínea , Venenos de Crotálidos/farmacología , Frecuencia Cardíaca , Hipertensión Renovascular/tratamiento farmacológico , Metaloproteasas/farmacología , Ratas Wistar , Remodelación VentricularRESUMEN
BACKGROUND: Fluoride has become widely used in dentistry because of its effectiveness in caries control. However, evidence indicates that excessive intake interferes with the metabolic processes of different tissues. Thus, this study aimed to investigate the effects of long-term exposure to F on the parotid salivary gland of mice, from the analysis of oxidative, proteomic and genotoxic parameters. MATERIALS AND METHODS: The animals received deionized water containing 0, 10 or 50 mg/L of F, as sodium fluoride, for 60 days. After, parotid glands were collected for analysis of oxidative biochemistry, global proteomic profile, genotoxicity assessment and histopathological analyses. RESULTS: The results revealed that exposure to fluoride interfered in the biochemical homeostasis of the parotid gland, with increased levels of thiobarbituric acid reactive species and reduced glutathione in the exposed groups; as well as promoted alteration of the glandular proteomic profile in these groups, especially in structural proteins and proteins related to oxidative stress. However, genotoxic assessment demonstrated that exposure to fluoride did not interfere with DNA integrity in these concentrations and durations of exposure. Also, it was not observed histopathological alterations in parotid gland. CONCLUSIONS: Thus, our results suggest that long-term exposure to fluoride promoted modulation of the proteomic and biochemical profile in the parotid glands, without inducing damage to the genetic component. These findings reinforce the importance of rationalizing the use of fluorides to maximize their preventative effects while minimizing the environmental risks.
Asunto(s)
Glándula Parótida/metabolismo , Proteoma/efectos de los fármacos , Proteómica/métodos , Fluoruro de Sodio/efectos adversos , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Oxidación-Reducción , Glándula Parótida/efectos de los fármacos , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de TiempoRESUMEN
Dapsone (DDS) therapy can frequently lead to hematological side effects, such as methemoglobinemia and DNA damage. In this study, we aim to evaluate the protective effect of racemic alpha lipoic acid (ALA) and its enantiomers on methemoglobin induction. The pre- and post-treatment of erythrocytes with ALA, ALA isomers, or MB (methylene blue), and treatment with DDS-NOH (apsone hydroxylamine) was performed to assess the protective and inhibiting effect on methemoglobin (MetHb) formation. Methemoglobin percentage and DNA damage caused by dapsone and its metabolites were also determined by the comet assay. We also evaluated oxidative parameters such as SOD, GSH, TEAC (Trolox equivalent antioxidant capacity) and MDA (malondialdehyde). In pretreatment, ALA showed the best protector effect in 2.5 µg/mL of DDS-NOH. ALA (1000 µM) was able to inhibit the induced MetHb formation even at the highest concentrations of DDS-NOH. All ALA tested concentrations (100 and 1000 µM) were able to inhibit ROS and CAT activity, and induced increases in GSH production. ALA also showed an effect on DNA damage induced by DDS-NOH (2.5 µg/mL). Both isomers were able to inhibit MetHb formation and the S-ALA was able to elevate GSH levels by stimulating the production of this antioxidant. In post-treatment with the R-ALA, this enantiomer inhibited MetHb formation and increased GSH levels. The pretreatment with R-ALA or S-ALA prevented the increase in SOD and decrease in TEAC, while R-ALA decreased the levels of MDA; and this pretreatment with R-ALA or S-ALA showed the effect of ALA enantiomers on DNA damage. These data show that ALA can be used in future therapies in patients who use dapsone chronically, including leprosy patients.
Asunto(s)
Metahemoglobina , Ácido Tióctico , Metahemoglobina/metabolismo , Antioxidantes/farmacología , Ácido Tióctico/farmacología , Dapsona/farmacología , Superóxido Dismutasa , Daño del ADNRESUMEN
In this study we explored the previously established leishmanicidal activity of a complementary set of 24 imidazolium salts (IS), 1-hexadecylimidazole (C16Im) and 1-hexadecylpyridinium chloride (C16PyrCl) against Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) infantum chagasi. Promastigotes of L. amazonensis and L. infantum chagasi were incubated with 0.1 to 100 µM of the compounds and eight of them demonstrated leishmanicidal activity after 48 h - C10MImMeS (IC50 L. amazonensis = 11.6), C16MImPF6(IC50 L. amazonensis = 6.9), C16MImBr (IC50 L. amazonensis = 6), C16M2ImCl (IC50 L. amazonensis = 4.1), C16M4ImCl (IC50 L. amazonensis = 1.8), (C10)2MImCl (IC50 L. amazonensis = 1.9), C16Im (IC50 L. amazonensis = 14.6), and C16PyrCl (IC50 L. amazonensis = 4).The effect of IS on reactive oxygen species production, mitochondrial membrane potential, membrane integrity and morphological alterations of promastigotes was determined, as well as on L. amazonensis-infected macrophages. Their cytotoxicity against macrophages and human erythrocytes was also evaluated. The IS C10MImMeS, C16MImPF6, C16MImBr, C16M2ImCl, C16M4ImCl and (C10)2MImCl, and the compounds C16Im and C16PyrCl killed and inhibited the growth of promastigote forms of L. amazonensis and L. infantum chagasi in a concentration-dependent manner, contributing to a better understanding of the structure-activity relationship of IS against Leishmania. These IS induced ROS production, mitochondrial dysfunction, membrane disruption and morphological alterations in infective forms of L. amazonensis and killed intracellular amastigote forms in very low concentrations (IC50 amastigotes ≤ 0.3), being potential drug candidates against L. amazonensis.
Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmania mexicana , Animales , Ratones , Humanos , Sales (Química)/farmacología , Antiprotozoarios/farmacología , Ratones Endogámicos BALB C , Estrés OxidativoRESUMEN
Although fluoride (F) is well-known to prevent dental caries, changes in cell processes in different tissues have been associated with its excessive exposure. Thus, this study aimed to evaluate the effects of F exposure on biochemical, proteomic, and genotoxic parameters of submandibular glands. Twenty one old rats (n = 30) were allocated into three groups: 60 days administration of drinking water containing 10 mgF/L, 50 mgF/L, or only deionized water (control). The submandibular glands were collected for oxidative biochemistry, protein expression profile, and genotoxic potential analyses. The results showed that both F concentrations increased the levels of thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) and changed the proteomic profile, mainly regarding the cytoskeleton and cellular activity. Only the exposure to 50 mgF/L induced significant changes in DNA integrity. These findings reinforce the importance of continuous monitoring of F concentration in drinking water and the need for strategies to minimize F intake from other sources to obtain maximum preventive/therapeutic effects and avoid potential adverse effects.
RESUMEN
Pancreatic cancer is an aggressive, devastating disease due to its invasiveness, rapid progression, and resistance to surgical, pharmacological, chemotherapy, and radiotherapy treatments. The disease develops from PanINs lesions that progress through different stages. KRAS mutations are frequently observed in these lesions, accompanied by inactivation of PTEN, hyperactivation of the PI3K/AKT pathway, and chronic inflammation with overexpression of COX-2. Nimesulide is a selective COX-2 inhibitor that has shown anticancer effects in neoplastic pancreatic cells. This drug works by increasing the levels of PTEN expression and inhibiting proliferation and apoptosis. However, there is a need to improve nimesulide through its encapsulation by solid lipid nanoparticles to overcome problems related to the hepatotoxicity and bioavailability of the drug.
RESUMEN
The long-term treatment with tamoxifen can alter the lipid profile of patients with breast cancer. Only a few studies associated the plasma concentrations of tamoxifen, endoxifen, and 4-hydroxytamoxifen with blood lipids, which is relevant as the distribution of these compounds for the tissues can be changed, negatively affecting the treatment. The variations in lipids also can account for the high interindividual variation in plasma concentrations of these compounds. The aim of this preliminary study was to associate the plasma levels of tamoxifen and the active metabolites with the lipid levels. An observational study of cases was conducted in patients with breast cancer using tamoxifen in a daily dose of 20 mg. The lipids were measured by spectrophotometric methods and the plasma concentrations of tamoxifen, endoxifen, and 4-hydroxytamoxifen by high-performance liquid chromatography. A total of 20 patients were included in the study. The median plasma concentrations of tamoxifen, 4-hydroxytamoxifen and endoxifen were 62 ng/mL, 1.04 ng/mL and 8.79 ng/mL. Triglycerides levels ranged from 59 to 352 mg/dL, total cholesterol from 157 to 321 mg/dL, LDL-c from 72 mg/dL to 176 mg/dL and HDL-C from 25.1 mg/dL to 62.8 mg/dL. There were no significant associations between the plasma concentrations of tamoxifen, 4-hydroxytamoxifen, and endoxifen with the levels of triglycerides and total cholesterol. The multivariate analysis revealed a weak association between plasma concentrations of tamoxifen and the active metabolites with HDL-c, LDL-c and VLDL-c. This finding provides preliminary evidence of the low impact of lipoproteins levels in the exposure to tamoxifen, 4-hydroxytamoxifen and endoxifen.
Asunto(s)
Antineoplásicos Hormonales/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Lípidos/sangre , Tamoxifeno/administración & dosificación , Adulto , Antineoplásicos Hormonales/farmacocinética , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Persona de Mediana Edad , Tamoxifeno/análogos & derivados , Tamoxifeno/sangre , Tamoxifeno/farmacocinéticaRESUMEN
The alveolar bone is an important mineralized structure of the periodontal support apparatus, and information about the methylmercury (MeHg) effects on the structural integrity is scarce. Therefore, this study aimed to investigate whether systemic, chronic, and low-dose exposure to MeHg can change the alveolar bone microstructure of rats. Adult Wistar rats (n = 30) were exposed to 0.04 mg/kg/day of MeHg or vehicle through intragastric gavage. The animals were euthanized after 60 days, and blood samples were collected for trolox equivalent antioxidant capacity (TEAC), glutathione (GSH), lipid peroxidation (LPO), and comet assays. The mandible of each animal was collected and separated into hemimandibles that were used to determine the total Hg level in the bone and to analyze microstructural damage and alveolar bone loss in terms of trabecular number (Tb.N), trabecular thickness (Tb.Th), bone volume fraction (BV/TV), and exposed root area of the second molars. MeHg exposure triggered oxidative stress in blood represented by lower levels of GSH and TEAC and the increase in LPO and DNA damage of the blood cells. High total Hg levels were found in the alveolar bone, and the microstructural analyses showed a reduction in Tb.N, Tb.Th, and BV/TV, which resulted in an increase in the exposed root area and a decrease in bone height. Long-term MeHg exposure promotes a systemic redox imbalance associated with microstructural changes and alveolar bone loss and may indicate a potential risk indicator for periodontal diseases.
Asunto(s)
Pérdida de Hueso Alveolar , Compuestos de Metilmercurio , Pérdida de Hueso Alveolar/inducido químicamente , Pérdida de Hueso Alveolar/diagnóstico por imagen , Animales , Mandíbula/diagnóstico por imagen , Compuestos de Metilmercurio/toxicidad , Estrés Oxidativo , Ratas , Ratas WistarRESUMEN
The venoms of wasps are a complex mixture of biologically active compounds, such as low molecular mass compounds, peptides, and proteins. The aim of the study was to evaluate the action of wasp venoms, Polybia occidentalis and Polybia fastidiosa, on the DNA of human leukocytes and on the cell cycle and genetic material of the plant model Lactuca sativa L. (lettuce). The cultured leukocytes were treated with the venoms and then evaluated by the comet assay. On another assay, seeds were exposed to a venom solution; the emitted roots were collected and the occurrence of cell cycle alterations (CCAs) and DNA fragmentation were evaluated by agarose gel electrophoresis and TUNEL assay. The results demonstrated that the venom of both wasps induces several CCAs and reduces the mitotic index (MI) on treated cells. They induced damage on human leukocytes DNA. High frequencies of fragments were observed in cells exposed to P. occidentalis venom, while those exposed to P. fastidiosa showed a high frequency of non-oriented chromosome. Both venoms induced the occurrence of various condensed nuclei (CN). This alteration is an excellent cytological mark to cell death (CD). Additionally, CD was evidenced by positive signals in TUNEL assay, by DNA fragmentation in agarose gel electrophoresis with vegetal cells, and by DNA fragmentation of the human leukocytes evaluated. Furthermore, human leukocytes exposed to the venom of P. fastidiosa had high rate of damage. The data demonstrate that both vegetal and human cells are adequate to evaluate the genotoxicity induced by venoms.
Asunto(s)
Avispas , Animales , Ensayo Cometa , Fragmentación del ADN , Humanos , Leucocitos , Venenos de AvispasRESUMEN
Mercury chloride (HgCl2) is a compound found in the environment that presents low risk due to low liposolubility. Considering the importance of blood as access rout to the systemic distribution of this toxicant to the organism as well as functions performed by it, this study aimed to investigate the effects of HgCl2 on the peripheral blood of rats, evaluating the oxidative biochemistry, blood count, and morphology of cell populations. For this, 20 adult Wistar male rats were divided into control (n = 10) and exposed (n = 10) groups and received distilled water or HgCl2 at a dose of 0.375 mg/kg for 45 days, respectively, through intragastric gavage. Then, the animals were euthanized and the blood was collected for total mercury (Hg) levels determination, complete blood and reticulocyte count, oxidative biochemistry by Trolox Equivalent Antioxidant Capacity (TEAC), reduced glutathione (GSH) levels, superoxide dismutase activity (SOD), thiobarbituric acid reactive substances (TBARS), and nitric oxide (NO), in blood cells and plasma. Long-term exposure increased total Hg in plasma and blood cells. In blood cells, only TEAC has decreased; in plasma, the HgCl2 increased TBARS and NO levels, followed by a decrease in TEAC and GSH levels. There were no quantitative changes in reticulocytes, erythrocytes, and hemoglobin; however, the number of leukocytes have increased and platelets have decreased. Our results suggest that even in the face of low toxicity when compared with other mercury species, HgCl2 at low doses is able to modulate the systemic redox balance and affect some blood cell populations.
Asunto(s)
Mercurio , Animales , Antioxidantes , Masculino , Cloruro de Mercurio/toxicidad , Mercurio/toxicidad , Estrés Oxidativo , Ratas , Ratas WistarRESUMEN
Lead (Pb) is an environmental and occupational neurotoxicant after long-term exposure. This study aimed to investigate the effects of systemic Pb exposure in rats from adolescence to adulthood, evaluating molecular, morphologic and functional aspects of hippocampus. For this, male Wistar rats were exposed to 50 mg/kg of Pb acetate or distilled water for 55 days by intragastric gavage. For the evaluation of short-term and long-term memories, object recognition and step-down inhibitory avoidance tests were performed. At the end of the behavioral tests, the animals were euthanized and the hippocampus dissected and processed to the evaluation of: Pb content levels in hippocampal parenchyma; Trolox equivalent antioxidant capacity (TEAC), glutathione (GSH) and malondialdehyde (MDA) levels as parameters of oxidative stress and antioxidant status; global proteomic profile and neuronal degeneration by anti-NeuN immunohistochemistry analysis. Our results show the increase of Pb levels in the hippocampus of adult rats exposed from adolescence, increased MDA and GSH levels, modulation of proteins related to neural structure and physiology and reduced density of neurons, hence a poor cognitive performance on short and long-term memories. Then, the long-term exposure to Pb in this period of life may impair several biologic organizational levels of the hippocampal structure associated with functional damages.
Asunto(s)
Envejecimiento , Contaminantes Ambientales/toxicidad , Plomo/toxicidad , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Antioxidantes/metabolismo , Glutatión/metabolismo , Hipocampo , Masculino , Malondialdehído/metabolismo , Ratas , Ratas Wistar , Factores de TiempoRESUMEN
Ganoderma lucidum, mushroom used for centuries by Asian peoples as food supplement, has been shown interesting biological activities, including over the Central Nervous System. Besides, these mushroom bioactive compounds present antioxidant and anti-inflammatory activities. On the side, binge drinking paradigm consists of ethanol exposure that reflects the usual consumption of adolescents, which elicits deleterious effects, determined by high ethanol consumption, in a short period. In this study, we investigated whether the Aqueous Extract of G. lucidum (AEGl) reduces the behavioral disorders induced by alcohol. Male (n = 30) and female Wistar rats (n = 40), seventy-two days old, were used for behavioral/biochemical and oral toxicity test, respectively. Animals were exposed to 5 binges (beginning at 35 days old) of ethanol (3 g/kg/day) or distilled water. Twenty-four hours after the last binge administration, animals received AEGl (100 mg/kg/day) or distilled water for three consecutive days. After treatment protocol, open field, elevated plus maze, forced swim, and step-down inhibitory avoidance tests were performed. Oxidative stress parameters were measured to evaluate the REDOX balance. Our results demonstrated that AEGl elicited the recovery of spontaneous horizontal exploration capacity, anxiogenic- and depressive-profile, as well as short-term memory damage induced by binge-ethanol exposure. The behavioral effects of the extract were associated to the reequilibrium of the animals' REDOX balance. Thus, AEGl, a medicinal mushroom, ameliorates behavioral alteration on a model of motor, cognitive and psychiatric-like disorders induced by binge drinking paradigm and emerges as a useful tool as a food supplement in the management of disorders of alcoholic origin.
Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Etanol/efectos adversos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Reishi/química , Animales , Femenino , Masculino , Ratas , Ratas WistarRESUMEN
Aluminum (Al) is a neurotoxicant agent implicated in several behavioral, neuropathological and neurochemical changes associated with cognitive impairments. Nevertheless, mechanisms of damage and safety concentrations are still very discussed. Thus, the main purpose of this study was to investigate whether two aluminum low doses were able to produce deleterious effects on cognition of adult rats, including oxidative stress in hippocampus and prefrontal cortex, two important areas for cognition. For this, thirty adult Wistar rats were divided into three groups: Al1 (8.3 mg/kg/day), Al2 (32 mg/kg/day) and Control (Ultrapure Water), in which all three groups received their solutions containing or not AlCl3 by intragastric gavage for 60 days. After the experimental period, the short- and long-term memories were assessed by the object recognition test and step-down inhibitory avoidance. After euthanizing, prefrontal cortex and hippocampus samples were dissected for Al levels measurement and evaluation of oxidative biochemistry. Only Al2 increased Al levels in hippocampal parenchyma significantly; both concentrations did not impair short-term memory, while long-term memory was affected in Al1 and Al2. In addition, oxidative stress was observed in prefrontal and hippocampus in Al1 and Al2. Our results indicate that, in a translational perspective, humans are subjected to deleterious effects of Al over cognition even when exposed to low concentrations, by triggering oxidative stress and poor long-term memory performance.