Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 127: 952-960, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29969657

RESUMEN

The colonization of the epiphytic niche of Neotropical forest canopies played an important role in orchid's extraordinary diversification, with rare reversions to the terrestrial habit. To understand the evolutionary context of those reversals, we investigated the diversification of Galeandra, a Neotropical orchid genus which includes epiphytic and terrestrial species. We hypothesized that reversion to the terrestrial habit accompanied the expansion of savannas. To test this hypothesis we generated a comprehensive time-calibrated phylogeny and employed comparative methods. We found that Galeandra originated towards the end of the Miocene in Amazonia. The terrestrial clade originated synchronously with the rise of dry vegetation biomes in the last 5 million years, suggesting that aridification dramatically impacted plant diversification and habits in the Neotropics. Shifts in habit impacted floral spur lengths and geographic range size, but not climatic niche. The longer spurs and narrower ranges characterize epiphytic species, which probably adapted to specialized long-tongued Euglossini bee pollinators inhabiting forested habits. The terrestrial species present variable floral spurs and wider distribution ranges, with evidence of self-pollination, suggesting the loss of specialized pollination system and concomitant range expansion. Our study highlights how climate change impacted habit evolution and associated traits such as mutualistic interactions with pollinators.


Asunto(s)
Ecosistema , Orchidaceae/fisiología , Árboles/fisiología , Animales , Abejas/fisiología , Calibración , Clima , Orchidaceae/clasificación , Filogenia , Filogeografía , Polinización , Factores de Tiempo
2.
Mol Phylogenet Evol ; 78: 105-17, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24811091

RESUMEN

The plastid spacer trnD-trnT and the nuclear ribosomal internal transcribed spacer (ITS) were sequenced for 37 samples of herbaceous bamboos (Poaceae: Olyreae), including all Raddia species and allied genera, as well as two members of the woody bamboos (tribes Bambuseae and Arundinarieae), in order to examine their relationships. The sequences were analyzed using maximum parsimony and Bayesian inference. Both the individual and combined analyses of ITS and trnD-trnT supported Olyreae as a monophyletic group. All species of Raddia also formed a well-supported monophyletic group, and combined datasets allowed us to outline some relationships within this group. Individual analyses indicated incongruence regarding the sister group of Raddia, with ITS data weakly indicating Raddiella malmeana whereas trnD-trnT data supported Sucrea maculata in this position. However, the combined analysis supported Sucrea as sister to Raddia, although the monophyly of Sucrea is not well supported. Parodiolyra is paraphyletic to Raddiella in all analyses; Olyra is also paraphyletic, with species of Lithachne, Arberella and Cryptochloa nested within it. Eremitis and Pariana appeared as an isolated clade within Olyreae, and the position of the New Guinean Buergersiochloa remains uncertain within this tribe.


Asunto(s)
Filogenia , Poaceae/clasificación , Teorema de Bayes , ADN de Plantas/química , ADN Espaciador Ribosómico/química , Plastidios/genética , Poaceae/anatomía & histología , Poaceae/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...