Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3209, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268622

RESUMEN

Cytokinesis partitions cellular content between daughter cells. It relies on the formation of an acto-myosin contractile ring, whose constriction induces the ingression of the cleavage furrow between the segregated chromatids. Rho1 GTPase and its RhoGEF (Pbl) are essential for this process. However, how Rho1 is regulated to sustain furrow ingression while maintaining correct furrow position remains poorly defined. Here, we show that during asymmetric division of Drosophila neuroblasts, Rho1 is controlled by two Pbl isoforms with distinct localisation. Spindle midzone- and furrow-enriched Pbl-A focuses Rho1 at the furrow to sustain efficient ingression, while Pbl-B pan-plasma membrane localization promotes the broadening of Rho1 activity and the subsequent enrichment of myosin on the entire cortex. This enlarged zone of Rho1 activity is critical to adjust furrow position, thereby preserving correct daughter cell size asymmetry. Our work highlights how the use of isoforms with distinct localisation makes an essential process more robust.


Asunto(s)
División Celular Asimétrica , Citocinesis , Animales , Factores de Intercambio de Guanina Nucleótido Rho , Drosophila , Membrana Celular , Isoformas de Proteínas/genética , Huso Acromático
2.
ACS Chem Biol ; 16(11): 2307-2314, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34590826

RESUMEN

Bioorthogonal chemical reporters, in synergy with click chemistry, have emerged as a key technology for tagging complex glycans in living cells. This strategy relies on the fact that bioorthogonal chemical reporters are highly reactive species while being biologically noninvasive. Here, we report that chemical reporters and especially sydnones may have, on the contrary, enormous impact on biomolecule processing enzymes. More specifically, we show that editing cell-surface sialic acid-containing glycans (sialosides) with bioorthogonal chemical reporters can significantly affect the activity of bacterial sialidases, enzymes expressed by bacteria during pathogenesis for cleaving sialic acid sugars from mammalian cell-surface glycans. Upon screening various chemical reporters, as well as their position on the sialic acid residue, we identified that pathogenic bacterial sialidases were unable to cleave sialosides displaying a sydnone at the 5-position of sialic acids in vitro as well as in living cells. This study highlights the importance of investigating more systematically the metabolic fate of glycoconjugates modified with bioorthogonal reporters.


Asunto(s)
Bacterias/enzimología , Membrana Celular/química , Neuraminidasa/metabolismo , Ácidos Siálicos/química , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Neuraminidasa/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Especificidad por Sustrato
3.
J Cell Sci ; 133(13)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487663

RESUMEN

The DNA damage sensor Mre11-Rad50-Nbs1 complex and Polo kinase are recruited to DNA lesions during mitosis. However, their mechanism of recruitment is elusive. Here, using live-cell imaging combined with micro-irradiation of single chromosomes, we analyze the dynamics of Polo and Mre11 at DNA lesions during mitosis in Drosophila These two proteins display distinct kinetics. Whereas Polo kinetics at double-strand breaks (DSBs) are Cdk1-driven, Mre11 promptly but briefly associates with DSBs regardless of the phase of mitosis and re-associates with DSBs in the proceeding interphase. Mechanistically, Polo kinase activity is required for its own recruitment and that of the mitotic proteins BubR1 and Bub3 to DSBs. Moreover, depletion of Rad50 severely impaired Polo kinetics at mitotic DSBs. Conversely, ectopic tethering of Mre11 to chromatin was sufficient to recruit Polo. Our study highlights a novel pathway that links the DSB sensor Mre11-Rad50-Nbs1 complex and Polo kinase to initiate a prompt, decisive response to the presence of DNA damage during mitosis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Ácido Anhídrido Hidrolasas , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas , Proteína Homóloga de MRE11/genética , Mitosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Nat Commun ; 8(1): 326, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28835609

RESUMEN

Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here we report that cells clear trailing chromatids from the cleavage site by undergoing two phases of cell elongation. The first phase relies on the assembly of a wide contractile ring. The second phase requires the activity of a pool of myosin that flows from the ring and enriches the nascent daughter cell cortices. This myosin efflux is a novel feature of cytokinesis and its duration is coupled to nuclear envelope reassembly and the nuclear sequestration of the Rho-GEF Pebble. Trailing chromatids induce a delay in nuclear envelope reassembly concomitant with prolonged cortical myosin activity, thus providing forces for the second elongation. We propose that the modulation of cortical myosin dynamics is part of the cellular response triggered by a "chromatid separation checkpoint" that delays nuclear envelope reassembly and, consequently, Pebble nuclear sequestration when trailing chromatids are present at the midzone.Chromatid segregation must be coordinated with cytokinesis to preserve genomic stability. Here the authors show that cells clear trailing chromatids from the cleavage site in a two-step cell elongation and demonstrate the role of myosin efflux in the second phase.


Asunto(s)
Procesos de Crecimiento Celular/genética , Segregación Cromosómica/genética , Citocinesis/genética , Miosinas/genética , Animales , Animales Modificados Genéticamente , Células Cultivadas , Cromátides/genética , Cromátides/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Miosinas/metabolismo , Transporte de Proteínas , Pupa/citología , Pupa/genética , Pupa/metabolismo , Imagen de Lapso de Tiempo/métodos
5.
J Cell Biol ; 211(3): 517-32, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26553926

RESUMEN

The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box-dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3-BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes.


Asunto(s)
Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromosomas/genética , Dípteros/metabolismo , Proteínas de Drosophila/metabolismo , Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Cromosomas/metabolismo , Roturas del ADN de Doble Cadena , Dípteros/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
J Cell Biol ; 199(5): 745-53, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23185030

RESUMEN

Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)-depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity.


Asunto(s)
Adaptación Fisiológica , Forma de la Célula/fisiología , Cromátides/metabolismo , Segregación Cromosómica , Citocinesis , Drosophila melanogaster/citología , Células-Madre Neurales/citología , Animales , Drosophila melanogaster/genética , Miosinas/metabolismo
7.
Open Biol ; 2(5): 120070, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22724069

RESUMEN

Cytokinesis controls the proper segregation of nuclear and cytoplasmic materials at the end of cell division. The chromosomal passenger complex (CPC) has been proposed to monitor the final separation of the two daughter cells at the end of cytokinesis in order to prevent cell abscission in the presence of DNA at the cleavage site, but the precise molecular basis for this is unclear. Recent studies indicate that abscission could be mediated by the assembly of filaments comprising components of the endosomal sorting complex required for transport-III (ESCRT-III). Here, we show that the CPC subunit Borealin interacts directly with the Snf7 components of ESCRT-III in both Drosophila and human cells. Moreover, we find that the CPC's catalytic subunit, Aurora B kinase, phosphorylates one of the three human Snf7 paralogues-CHMP4C-in its C-terminal tail, a region known to regulate its ability to form polymers and associate with membranes. Phosphorylation at these sites appears essential for CHMP4C function because their mutation leads to cytokinesis defects. We propose that CPC controls abscission timing through inhibition of ESCRT-III Snf7 polymerization and membrane association using two concurrent mechanisms: interaction of its Borealin component with Snf7 proteins and phosphorylation of CHMP4C by Aurora B.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Aurora Quinasa B , Aurora Quinasas , Biopolímeros , Línea Celular , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Genes Reporteros , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso , Fosforilación , Fosfoserina/metabolismo , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
J Cell Biol ; 195(4): 595-603, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22084308

RESUMEN

In many organisms, the small guanosine triphosphatase RhoA controls assembly and contraction of the actomyosin ring during cytokinesis by activating different effectors. Although the role of some RhoA effectors like formins and Rho kinase is reasonably understood, the functions of another putative effector, Citron kinase (CIT-K), are still debated. In this paper, we show that, contrary to previous models, the Drosophila melanogaster CIT-K orthologue Sticky (Sti) does not require interaction with RhoA to localize to the cleavage site. Instead, RhoA fails to form a compact ring in late cytokinesis after Sti depletion, and this function requires Sti kinase activity. Moreover, we found that the Sti Citron-Nik1 homology domain interacts with RhoA regardless of its status, indicating that Sti is not a canonical RhoA effector. Finally, Sti depletion caused an increase of phosphorylated myosin regulatory light chain at the cleavage site in late cytokinesis. We propose that Sti/CIT-K maintains correct RhoA localization at the cleavage site, which is necessary for proper RhoA activity and contractile ring dynamics.


Asunto(s)
Citocinesis , Proteínas de Drosophila/metabolismo , Drosophila/citología , Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales
9.
Tissue Cell ; 43(4): 254-61, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21696798

RESUMEN

Nuclear Pore Complexes (NPCs) are involved in the regulation of nucleo-cytoplasmic trafficking. Drosophila Nup154 encodes a nucleoporin component of the NPC that is expressed in high proliferating tissues such as germ cells. Hypomorphic mutations in this gene cause male and female sterility and reduction of cell proliferation in the adult fly. Here, we present evidences of a decrease in the number of spermatogonial cells in Nup154 mutants, caused both by increased cell death and reduced cell proliferation. Furthermore, we also found that RNAi-mediated depletion of Nup154 in cultured cells prevented nuclear accumulation of the transcription factor Mothers against Dpp (Mad), suggesting a possible regulatory role for Nup154 in TGF-ß signal transduction. These results were confirmed in vivo on mutant testes where we observed a similar defect in the nuclear accumulation of the co-Smad Medea.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Proteínas de Complejo Poro Nuclear/fisiología , Espermatogénesis/genética , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Supervivencia Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Masculino , Mutación , Proteínas de Complejo Poro Nuclear/genética , Interferencia de ARN , Transducción de Señal , Factores de Transcripción/genética
10.
PLoS One ; 6(1): e14600, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-21297952

RESUMEN

BACKGROUND: CDK11(p58) is a mitotic protein kinase, which has been shown to be required for different mitotic events such as centrosome maturation, chromatid cohesion and cytokinesis. METHODOLOGY/PRINCIPAL FINDINGS: In addition to these previously described roles, our study shows that CDK11(p58) inhibition induces a failure in the centriole duplication process in different human cell lines. We propose that this effect is mediated by the defective centrosomal recruitment of proteins at the onset of mitosis. Indeed, Plk4 protein kinase and the centrosomal protein Cep192, which are key components of the centriole duplication machinery, showed reduced levels at centrosomes of mitotic CDK11-depleted cells. CDK11(p58), which accumulates only in the vicinity of mitotic centrosomes, directly interacts with the centriole-associated protein kinase Plk4 that regulates centriole number in cells. In addition, we show that centriole from CDK11 defective cells are not able to be over duplicated following Plk4 overexpression. CONCLUSION/SIGNIFICANCE: We thus propose that CDK11 is required for centriole duplication by two non-mutually-exclusive mechanisms. On one hand, the observed duplication defect could be caused indirectly by a failure of the centrosome to fully maturate during mitosis. On the other hand, CDK11(p58) could also directly regulate key centriole components such as Plk4 during mitosis to trigger essential mitotic centriole modifications, required for centriole duplication during subsequent interphase.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Ciclina D3/fisiología , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Ciclina D3/metabolismo , Expresión Génica , Células HeLa , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas
11.
J Cell Biol ; 191(7): 1351-65, 2010 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-21187330

RESUMEN

Cytokinesis, the final step of cell division, usually ends with the abscission of the two daughter cells. In some tissues, however, daughter cells never completely separate and remain interconnected by intercellular bridges or ring canals. In this paper, we report the identification and analysis of a novel ring canal component, Nessun Dorma (Nesd), isolated as an evolutionarily conserved partner of the centralspindlin complex, a key regulator of cytokinesis. Nesd contains a pectin lyase-like domain found in proteins that bind to polysaccharides, and we present evidence that it has high affinity for ß-galactosides in vitro. Moreover, nesd is an essential gene in Drosophila melanogaster, in which it is required for completion of cytokinesis during male meiosis and possibly in female germline cells. Our findings indicate that Nesd is a novel carbohydrate-binding protein that functions together with centralspindlin in late cytokinesis, thus highlighting the importance of glycosylation in this process.


Asunto(s)
Citocinesis/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Meiosis/fisiología , Proteínas Asociadas a Microtúbulos/genética , Espermatocitos/citología , Huso Acromático/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Contráctiles/metabolismo , Proteínas de Drosophila/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Galactósidos/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Filogenia , Polisacáridos/metabolismo , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Espermatocitos/metabolismo , Telofase/fisiología
12.
J Cell Biol ; 189(4): 651-9, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20479466

RESUMEN

Aurora A is a spindle pole-associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150(glued) on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated. If aurora A's function is compromised, dynactin and dynein become enriched on mitotic spindle microtubules. Phosphorylation sites are localized within the conserved microtubule-binding domain (MBD) of the p150(glued). Although wild-type p150(glued) binds weakly to spindle microtubules, a variant that can no longer be phosphorylated by aurora A remains associated with spindle microtubules and fails to rescue depletion of endogenous p150(glued). Our results suggest that aurora A kinase participates in vivo to the phosphoregulation of the p150(glued) MBD to limit the microtubule binding of the dynein-dynactin complex and thus regulates spindle assembly.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa A , Aurora Quinasas , Sitios de Unión , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Complejo Dinactina , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/metabolismo , Huso Acromático/metabolismo
13.
J Cell Biol ; 179(4): 601-9, 2007 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-17998396

RESUMEN

The spindle checkpoint delays anaphase onset until every chromosome kinetochore has been efficiently captured by the mitotic spindle microtubules. In this study, we report that the human pre-messenger RNA processing 4 (PRP4) protein kinase associates with kinetochores during mitosis. PRP4 depletion by RNA interference induces mitotic acceleration. Moreover, we frequently observe lagging chromatids during anaphase leading to aneuploidy. PRP4-depleted cells do not arrest in mitosis after nocodazole treatment, indicating a spindle assembly checkpoint (SAC) failure. Thus, we find that PRP4 is necessary for recruitment or maintenance of the checkpoint proteins MPS1, MAD1, and MAD2 at the kinetochores. Our data clearly identify PRP4 as a previously unrecognized kinetochore component that is necessary to establish a functional SAC.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Metaloproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/fisiología , Proteínas Ribosómicas/metabolismo , Huso Acromático/fisiología , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Mad2 , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Transgenes
14.
EMBO Rep ; 7(4): 418-24, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16462731

RESUMEN

The CDK11 (cyclin-dependent kinase 11) gene has an internal ribosome entry site (IRES), allowing the expression of two protein kinases. The longer 110-kDa isoform is expressed at constant levels during the cell cycle and the shorter 58-kDa isoform is expressed only during G2 and M phases. By means of RNA interference (RNAi), we show that the CDK11 gene is required for mitotic spindle formation. CDK11 RNAi leads to mitotic checkpoint activation. Mitotic cells are arrested with short or monopolar spindles. gamma-Tubulin as well as Plk1 and Aurora A protein kinase levels are greatly reduced at centrosomes, resulting in microtubule nucleation defects. We show that the mitotic CDK11(p58) isoform, but not the CDK11(p110) isoform, associates with mitotic centrosomes and rescues the phenotypes resulting from CDK11 RNAi. This work demonstrates for the first time the role of CDK11(p58) in centrosome maturation and bipolar spindle morphogenesis.


Asunto(s)
Centrosoma/enzimología , Centrosoma/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Huso Acromático/enzimología , Huso Acromático/fisiología , Aurora Quinasas , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Polaridad Celular , Quinasas Ciclina-Dependientes/genética , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitosis , Fenotipo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Quinasa Tipo Polo 1
15.
Cell Cycle ; 4(9): 1233-8, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16082213

RESUMEN

CDC25B is one of the three human dual-specificity phosphatases involved in the activation of cyclin-dependent kinases at key stages of the cell division cycle. CDC25B that is responsible for the activation of CDK1-cyclin B1 is regulated by phosphorylation. The STK15/Aurora-A kinase locally phosphorylates CDC25B on serine 353 at the centrosome during the G2/M transition. Here we have investigated this phosphorylation event during the cell cycle, and in response to activation of the G2 DNA damage checkpoint. We show that accumulation of the S353-phosphorylated form of CDC25B at the centrosome correlates with the relocalization of cyclin B1 to the nucleus and the activation of CDK1 at entry into mitosis. Upon activation of the G2/M checkpoint by DNA damage, we demonstrate that Aurora-A is not activated and consequently CDC25B is not phosphorylated. We show that ectopic expression of Aurora-A results in a bypass of the checkpoint that was partially overcome by a S353A mutant of CDC25B. Finally, we show that bypass of the G2/M checkpoint by the CHK1 kinase inhibitor UCN-01 results in the activation of Aurora-A and phosphorylation of CDC25B on S353. These results strongly suggest that Aurora-A-mediated phosphorylation of CDC25B at the centrosome is an important step contributing to the earliest events inducing mitosis, upstream of CDK1-cyclin B1 activation.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Proteínas Serina-Treonina Quinasas/química , Fosfatasas cdc25/fisiología , Aurora Quinasa A , Aurora Quinasas , Proteínas de Ciclo Celular/metabolismo , División Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Ciclina B/química , Ciclina B1 , Fase G2 , Células HeLa , Histonas/química , Humanos , Microscopía Fluorescente , Mitosis , Mutación , Fosforilación , Conformación Proteica , Serina/química , Factores de Tiempo , Transfección , Tirosina/química , Fosfatasas cdc25/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...