Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38794713

RESUMEN

Hypertensive diseases of pregnancy (HDPs) represent a global clinical challenge, affecting 5-10% of women and leading to complications for both maternal well-being and fetal development. At the heart of these complications is endothelial dysfunction, with oxidative stress emerging as a pivotal causative factor. The reduction in nitric oxide (NO) bioavailability is a vital indicator of this dysfunction, culminating in blood pressure dysregulation. In the therapeutic context, although antihypertensive medications are commonly used, they come with inherent concerns related to maternal-fetal safety, and a percentage of women do not respond to these therapies. Therefore, alternative strategies that directly address the pathophysiology of HDPs are required. This article focuses on the potential of the nitrate-nitrite-NO pathway, abundantly present in dark leafy greens and beetroot, as an alternative approach to treating HDPs. The objective of this review is to discuss the prospective antioxidant role of nitrate. We hope our discussion paves the way for using nitrate to improve endothelial dysfunction and control oxidative stress, offering a potential therapy for managing HDPs.


Asunto(s)
Hipertensión Inducida en el Embarazo , Nitratos , Óxido Nítrico , Nitritos , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Embarazo , Nitratos/metabolismo , Femenino , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Hipertensión Inducida en el Embarazo/tratamiento farmacológico , Hipertensión Inducida en el Embarazo/metabolismo , Antioxidantes , Beta vulgaris
2.
Nat Chem Biol ; 19(10): 1267-1275, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37710073

RESUMEN

Despite wide appreciation of the biological role of nitric oxide (NO) synthase (NOS) signaling, questions remain about the chemical nature of NOS-derived bioactivity. Here we show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase and directly activate the sGC-cGMP-PKG pathway without intermediacy of free NO. The NO-ferroheme species (with or without a protein carrier) efficiently relax isolated blood vessels and induce hypotension in rodents, which is greatly potentiated after the blockade of NOS activity. While free NO-induced relaxations are abolished by an NO scavenger and in the presence of red blood cells or blood plasma, a model compound, NO-ferroheme-myoglobin preserves its vasoactivity suggesting the physiological relevance of NO-ferroheme species. We conclude that NO-ferroheme behaves as a signaling entity in the vasculature.


Asunto(s)
Eritrocitos , Óxido Nítrico , Hemo , Transducción de Señal
3.
Nitric Oxide ; 119: 50-60, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34958954

RESUMEN

Organic nitrates are widely used to restore endogenous nitric oxide (NO) levels reduced by endothelial nitric oxide synthase dysfunction. However, these drugs are associated with undesirable side effects, including tolerance. This study aims to investigate the cardiovascular effects of the new organic nitrate 1,3-diisobutoxypropan-2-yl nitrate (NDIBP). Specifically, we assessed its effects on blood pressure, vascular reactivity, acute toxicity, and the ability to induce tolerance. In vitro and ex vivo techniques showed that NDIBP released NO both in a cell-free system and in isolated mesenteric arteries preparations through a process catalyzed by xanthine oxidoreductase. NDIBP also evoked endothelium-independent vasorelaxation, which was significantly attenuated by 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO, 300 µM), a nitric oxide scavenger; 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 µM), a soluble guanylyl cyclase inhibitor; tetraethylammonium (TEA, 3 mM), a potassium channel blocker; febuxostat (500 nM), a xanthine oxidase inhibitor; and proadifen (10 µM), an inhibitor of cytochrome P450 enzyme. Furthermore, this organic nitrate did not induce tolerance in isolated vessels and presented low toxicity following acute oral administration. In vivo changes on cardiovascular parameters were assessed using normotensive and renovascular hypertensive rats. NDIBP evoked a reduction of blood pressure that was significantly higher in hypertensive animals. Our results suggest that NDIBP acts as a NO donor, inducing blood pressure reduction without having the undesirable effects of tolerance. Those effects seem to be mediated by activation of NO-sGC-cGMP pathway and positive modulation of K+ channels in vascular smooth muscle.


Asunto(s)
Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Arterias Mesentéricas/efectos de los fármacos , Nitratos/uso terapéutico , Donantes de Óxido Nítrico/uso terapéutico , Vasodilatadores/uso terapéutico , Animales , Antihipertensivos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Hipertensión/metabolismo , Masculino , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Canales de Potasio/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble/metabolismo , Vasodilatadores/metabolismo , Xantina Deshidrogenasa/metabolismo
4.
Nitric Oxide ; 104-105: 61-69, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038483

RESUMEN

INTRODUCTION: Cardiovascular diseases are coupled to decreased nitric oxide (NO) bioavailability, and there is a constant search for novel and better NO-donors. Here we synthesized and characterized the cardiovascular effects of the new organic nitrate 2-nitrate-1,3-dioctanoxypropan (NDOP). METHODS: A combination of in vitro and in vivo experiments was performed in C57BL/6 mice and Wistar rats. Thus, the ability of NDOP in donating NO in a cell-free system and in vascular smooth muscles cells (VSMC) and its ability to induce vasorelaxation in aortic rings from mice were evaluated. In addition, changes in blood pressure and heart rate to different doses of NDOP were evaluated in conscious rats. Finally, acute pre-clinical toxicity to oral administration of NDOP was assessed in mice. RESULTS: In cell-free system, NDOP increased NO levels, which was dependent on xanthine oxidoreductase (XOR). NDOP also increased NO levels in VSMC, which was not influenced by endothelial NO synthase. Furthermore, incubation with the XOR inhibitor febuxostat blunted the vasorelaxation in aortic ring preparations. In conscious rats, NDOP elicited dose-dependent reduction in blood pressure accompanied with increased heart rate. In vessel preparations, NDOP (10-8-10-3 mol/L) induced endothelium-independent vasorelaxation, which was inhibited by the NO scavengers 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and hydroxocobalamin or by inhibition of soluble guanylyl cyclase using H- [1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one. To investigate if NDOP acts through potassium channels, selective blockers were used. Inhibition of BKCa, Kv or KATP subtypes of potassium channels had no effect, but inhibition of inward-rectifier potassium channels (KIR) significantly reduced NDOP-mediated vasorelaxation. Lastly, NDOP showed low toxicity (LD50 ~5000 mg/kg). CONCLUSION: Bioactivation of NDOP involves functional XOR, and this new organic nitrate elicits vasorelaxation via NO-cGMP-PKG signaling and activation of KIR channels. Future studies should further characterize the underlying mechanism and evaluate the therapeutic benefits of chronic NDOP treatment in relevant cardiovascular disease models.


Asunto(s)
Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Nitrocompuestos/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Masculino , Ratones Endogámicos C57BL , Donantes de Óxido Nítrico/toxicidad , Nitrocompuestos/toxicidad , Oxadiazoles/farmacología , Quinoxalinas/farmacología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Guanilil Ciclasa Soluble/antagonistas & inhibidores , Taquicardia/inducido químicamente , Vasodilatadores/toxicidad , Xantina Deshidrogenasa/metabolismo
5.
Free Radic Biol Med ; 160: 860-870, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32980539

RESUMEN

Aging is associated with decreased nitric oxide (NO) bioavailability and signalling. Boosting of a dietary nitrate-nitrite-NO pathway e.g. by ingestion of leafy green vegetables, improves cardiometabolic function, mitochondrial efficiency and reduces oxidative stress in humans and rodents, making dietary nitrate and nitrite an appealing intervention to address age-related disorders. On the other hand, these anions have long been implicated in detrimental health effects of our diet, particularly in formation of carcinogenic nitrosamines. The aim of this study was to assess whether inorganic nitrite affects lifespan in Drosophila melanogaster and investigate possible mechanisms underlying any such effect. In a survival assay, female flies fed a nitrite supplemented diet showed lifespan extension by 9 and 15% with 0.1 and 1 µM nitrite respectively, with no impact of nitrite on reproductive output. Interestingly, nitrite could also protect female flies from age-dependent locomotor decline, indicating a protective effect on healthspan. NO generation from nitrite involved Drosophila commensal bacteria and was indicated by a fluorescent probe as well as direct measurements of NO gas formation with chemiluminescence. Nutrient sensing pathways such as TOR and sirtuins, have been strongly implicated in lifespan extension. In aged flies, nitrite supplementation significantly downregulated dTOR and upregulated dSir2 gene expression. Total triglycerides and glucose were decreased, a described downstream effect of both TOR and sirtuin pathways. In conclusion, we demonstrate that very low doses of dietary nitrite extend lifespan and favour healthspan in female flies. We propose modulation of nutrient sensing pathways as driving mechanisms for such effects.


Asunto(s)
Proteínas de Drosophila , Longevidad , Animales , Drosophila , Drosophila melanogaster , Femenino , Nitritos
6.
Nanoscale ; 12(32): 16730-16737, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32785315

RESUMEN

Understanding the biological fate of graphene-based materials such as graphene oxide (GO) is crucial to assess adverse effects following intentional or inadvertent exposure. Here we provide first evidence of biodegradation of GO in the gastrointestinal tract using zebrafish as a model. Raman mapping was deployed to assess biodegradation. The degradation was blocked upon knockdown of nos2a encoding the inducible nitric oxide synthase (iNOS) or by pharmacological inhibition of NOS using l-NAME, demonstrating that the process was nitric oxide (NO)-dependent. NO-dependent degradation of GO was further confirmed in vitro by combining a superoxide-generating system, xanthine/xanthine oxidase (X/XO), with an NO donor (PAPA NONOate), or by simultaneously producing superoxide and NO by decomposition of SIN-1. Finally, by using the transgenic strain Tg(mpx:eGFP) to visualize the movement of neutrophils, we could show that inhibition of the degradation of GO resulted in increased neutrophil infiltration into the gastrointestinal tract, indicative of inflammation.


Asunto(s)
Grafito , Óxido Nítrico , Animales , Tracto Gastrointestinal/metabolismo , Inflamación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Pez Cebra/metabolismo
7.
Free Radic Biol Med ; 145: 342-348, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600544

RESUMEN

Nitric oxide (NO) is a key signalling molecule in the regulation of cardiometabolic function and impaired bioactivity is considered to play an important role in the onset and progression of cardiovascular and metabolic disease. Research has revealed an alternative NO-generating pathway, independent of NO synthase (NOS), in which the inorganic anions nitrate (NO3-) and nitrite (NO2-) are serially reduced to form NO. This work specifically aimed at investigating the role of commensal bacteria in bioactivation of dietary nitrate and its protective effects in a model of cardiovascular and metabolic disease. In a two-hit model, germ-free and conventional male mice were fed a western diet and the NOS inhibitor l-NAME in combination with sodium nitrate (NaNO3) or placebo (NaCl) in the drinking water. Cardiometabolic parameters including blood pressure, glucose tolerance and body composition were measured after six weeks treatment. Mice in both placebo groups showed increased body weight and fat mass, reduced lean mass, impaired glucose tolerance and elevated blood pressure. In conventional mice, nitrate treatment partly prevented the cardiometabolic disturbances induced by a western diet and l-NAME. In contrast, in germ-free mice nitrate had no such beneficial effects. In separate cardiovascular experiments, using conventional and germ-free animals, we assessed NO-like signalling downstream of nitrate by administration of sodium nitrite (NaNO2) via gavage. In this acute experimental setting, nitrite lowered blood pressure to a similar degree in both groups. Likewise, isolated vessels from germ-free mice robustly dilated in response to the NO donor sodium nitroprusside. In conclusion, our findings demonstrate the obligatory role of host-microbiota in bioactivation of dietary nitrate, thus contributing to its favourable cardiometabolic effects.


Asunto(s)
Enfermedades Cardiovasculares/genética , Sistema Cardiovascular/metabolismo , Interacciones Microbiota-Huesped/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/microbiología , Enfermedades Cardiovasculares/patología , Sistema Cardiovascular/microbiología , Sistema Cardiovascular/patología , Dieta Occidental/efectos adversos , Humanos , Ratones , NG-Nitroarginina Metil Éster/farmacología , Nitratos/farmacología , Óxido Nítrico Sintasa/genética , Nitritos/farmacología , Transducción de Señal/efectos de los fármacos
8.
Hypertens Res ; 42(8): 1166-1174, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30842612

RESUMEN

In this study, we demonstrated that plasma collected from women who subsequently developed preeclampsia caused increased heme oxygenase-1 (HO-1) production and decreased levels of nitric oxide (NO) markers in endothelial cells (HUVECs). Conversely, no changes in HO-1 or NO markers were found when HUVECs were treated with plasma from women who remained healthy throughout pregnancy. These alterations in HO-1 and NO markers were prevented by cotreatment with the polyphenol resveratrol, which also improved GSH levels. In addition, we evaluated changes induced by plasma incubation in the expression of genes and their related pathways associated with antioxidant defenses, such as Nrf2, ARE activity, and GSR. Collectively, our findings suggest that even before the appearance of clinical symptoms of preeclampsia, plasma from affected women is able to induce modifications in endothelial cells with respect to HO-1 production and NO markers. We believe that this in vitro strategy may offer an attractive alternative to the exploitation of candidate markers or screening molecules, such as resveratrol, for the prevention and management of preeclampsia.


Asunto(s)
Antioxidantes/uso terapéutico , Células Endoteliales/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Preeclampsia/sangre , Resveratrol/uso terapéutico , Adulto , Antioxidantes/farmacología , Evaluación Preclínica de Medicamentos , Células Endoteliales/enzimología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Preeclampsia/tratamiento farmacológico , Embarazo , Resveratrol/farmacología , Adulto Joven
10.
Proc Natl Acad Sci U S A ; 116(1): 217-226, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559212

RESUMEN

Advanced age and unhealthy dietary habits contribute to the increasing incidence of obesity and type 2 diabetes. These metabolic disorders, which are often accompanied by oxidative stress and compromised nitric oxide (NO) signaling, increase the risk of adverse cardiovascular complications and development of fatty liver disease. Here, we investigated the therapeutic effects of dietary nitrate, which is found in high levels in green leafy vegetables, on liver steatosis associated with metabolic syndrome. Dietary nitrate fuels a nitrate-nitrite-NO signaling pathway, which prevented many features of metabolic syndrome and liver steatosis that developed in mice fed a high-fat diet, with or without combination with an inhibitor of NOS (l-NAME). These favorable effects of nitrate were absent in germ-free mice, demonstrating the central importance of host microbiota in bioactivation of nitrate. In a human liver cell line (HepG2) and in a validated hepatic 3D model with primary human hepatocyte spheroids, nitrite treatment reduced the degree of metabolically induced steatosis (i.e., high glucose, insulin, and free fatty acids), as well as drug-induced steatosis (i.e., amiodarone). Mechanistically, the salutary metabolic effects of nitrate and nitrite can be ascribed to nitrite-derived formation of NO species and activation of soluble guanylyl cyclase, where xanthine oxidoreductase is proposed to mediate the reduction of nitrite. Boosting this nitrate-nitrite-NO pathway results in attenuation of NADPH oxidase-derived oxidative stress and stimulation of AMP-activated protein kinase and downstream signaling pathways regulating lipogenesis, fatty acid oxidation, and glucose homeostasis. These findings may have implications for novel nutrition-based preventive and therapeutic strategies against liver steatosis associated with metabolic dysfunction.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hígado Graso/prevención & control , NADPH Oxidasas/antagonistas & inhibidores , Nitratos/farmacología , Nitritos/farmacología , Animales , Activación Enzimática/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nitratos/administración & dosificación , Óxido Nítrico/metabolismo , Nitritos/administración & dosificación
12.
Redox Biol ; 15: 182-191, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29268201

RESUMEN

RATIONALE: Development and progression of cardiovascular diseases, including hypertension, are often associated with impaired nitric oxide synthase (NOS) function and nitric oxide (NO) deficiency. Current treatment strategies to restore NO bioavailability with organic nitrates are hampered by undesirable side effects and development of tolerance. In this study, we evaluated NO release capability and cardiovascular effects of the newly synthesized organic nitrate 1, 3-bis (hexyloxy) propan-2-yl nitrate (NDHP). METHODS: A combination of in vitro and in vivo approaches was utilized to assess acute effects of NDHP on NO release, vascular reactivity and blood pressure. The therapeutic value of chronic NDHP treatment was assessed in an experimental model of angiotensin II-induced hypertension in combination with NOS inhibition. RESULTS: NDHP mediates NO formation in both cell-free system and small resistance arteries, a process which is catalyzed by xanthine oxidoreductase. NDHP-induced vasorelaxation is endothelium independent and mediated by NO release and modulation of potassium channels. Reduction of blood pressure following acute intravenous infusion of NDHP was more pronounced in hypertensive rats (two-kidney-one-clip model) than in normotensive sham-operated rats. Toxicological tests did not reveal any harmful effects following treatment with high doses of NDHP. Finally, chronic treatment with NDHP significantly attenuated the development of hypertension and endothelial dysfunction in rats with chronic NOS inhibition and angiotensin II infusion. CONCLUSION: Acute treatment with the novel organic nitrate NDHP increases NO formation, which is associated with vasorelaxation and a significant reduction of blood pressure in hypertensive animals. Chronic NDHP treatment attenuates the progression of hypertension and endothelial dysfunction, suggesting a potential for therapeutic applications in cardiovascular disease.


Asunto(s)
Hipertensión/tratamiento farmacológico , Riñón/efectos de los fármacos , Óxido Nítrico/metabolismo , Nitrocompuestos/administración & dosificación , Angiotensina II/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Humanos , Hipertensión/metabolismo , Hipertensión/patología , Riñón/metabolismo , Riñón/patología , Masculino , Óxido Nítrico Sintasa/genética , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Endogámicas Dahl/genética , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo
13.
Int J Mol Sci ; 18(6)2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28617311

RESUMEN

This study aimed to investigate whether the -1026(A>C)(rs2779249) and +2087(A>G)(2297518) polymorphisms in the NOS2 gene were associated with chronic periodontitis (CP) and with salivary levels of nitrite (NO2-) and/or nitrate + nitrite (NOx). A group of 113 mixed-race patients were subjected to periodontal, genetic, and biochemical evaluations (65 CP/48 periodontally healthy subjects). DNA was extracted from oral epithelial cells and used for genotyping by polymerase chain reaction (real-time). Salivary NOx concentrations were determined using an ozone-based chemiluminescence assay. Association of CP with alleles and genotypes of the -1026(A>C) polymorphism was found (X² test, p = 0.0075; 0.0308), but this was not maintained after multiple logistic regression, performed to estimate the effect of covariates and polymorphisms in CP. This analysis demonstrated, after correction for multiple comparisons, that only the female gender was significantly associated with CP. Polymorphisms analyzed as haplotypes were not associated with CP. NOx levels were significantly higher in the control group of heterozygous individuals for both polymorphisms. In conclusion, the female gender was significantly associated with CP, and higher levels of salivary NOx were found in control subjects and associated with the heterozygous state of the NOS2 polymorphisms, reinforcing the potential of NO metabolites as markers of periodontitis status.


Asunto(s)
Periodontitis Crónica/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico/análisis , Polimorfismo de Nucleótido Simple , Adulto , Periodontitis Crónica/patología , Femenino , Genotipo , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Saliva/química
14.
Redox Biol ; 13: 163-169, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28578274

RESUMEN

In this report, we describe the synthesis and characterization of 1,3-bis(hexyloxy)propan-2-yl nitrate (NDHP), a novel organic mono nitrate. Using purified xanthine oxidoreductase (XOR), chemiluminescence and electron paramagnetic resonance (EPR) spectroscopy, we found that XOR catalyzes nitric oxide (NO) generation from NDHP under anaerobic conditions, and that thiols are not involved or required in this process. Further mechanistic studies revealed that NDHP could be reduced to NO at both the FAD and the molybdenum sites of XOR, but that the FAD site required an unoccupied molybdenum site. Conversely, the molybdenum site was able to reduce NDHP independently of an active FAD site. Moreover, using isolated vessels in a myograph, we demonstrate that NDHP dilates pre-constricted mesenteric arteries from rats and mice. These effects were diminished when XOR was blocked using the selective inhibitor febuxostat. Finally, we demonstrate that NDHP, in contrast to glyceryl trinitrate (GTN), is not subject to development of tolerance in isolated mesenteric arteries.


Asunto(s)
Óxido Nítrico/metabolismo , Nitrocompuestos/síntesis química , Vasodilatadores/síntesis química , Xantina Deshidrogenasa/metabolismo , Animales , Espectroscopía de Resonancia por Spin del Electrón , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Contracción Muscular , Óxido Nítrico/química , Nitrocompuestos/química , Nitrocompuestos/farmacología , Ratas , Vasodilatadores/química , Vasodilatadores/farmacología , Xantina Deshidrogenasa/química
15.
Hypertension ; 69(1): 23-31, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802417

RESUMEN

Inorganic nitrate and nitrite from dietary and endogenous sources are metabolized to NO and other bioactive nitrogen oxides that affect blood pressure. The mechanisms for nitrite bioactivation are unclear, but recent studies in rodents suggest that gastric acidity may influence the systemic effects of this anion. In a randomized, double-blind, placebo-controlled crossover study, we tested the effects of a proton pump inhibitor on the acute cardiovascular effects of nitrite. Fifteen healthy nonsmoking, normotensive subjects, aged 19 to 39 years, were pretreated with placebo or esomeprazole (3×40 mg) before ingesting sodium nitrite (0.3 mg kg-1), followed by blood pressure monitoring. Nitrite reduced systolic blood pressure by a maximum of 6±1.3 mm Hg when taken after placebo, whereas pretreatment with esomeprazole blunted this effect. Peak plasma nitrite, nitrate, and nitroso species levels after nitrite ingestion were similar in both interventions. In 8 healthy volunteers, we then infused increasing doses of sodium nitrite (1, 10, and 30 nmol kg-1 min-1) intravenously. Interestingly, although plasma nitrite peaked at similar levels as with orally ingested nitrite (≈1.8 µmol/L), no changes in blood pressure were observed. In rodents, esomeprazole did not affect the blood pressure response to the NO donor, DEA NONOate, or vascular relaxation to nitroprusside and acetylcholine, demonstrating an intact downstream NO-signaling pathway. We conclude that the acute blood pressure-lowering effect of nitrite requires an acidic gastric environment. Future studies will reveal if the cardiovascular complications associated with the use of proton pump inhibitors are linked to interference with the nitrate-nitrite-NO pathway.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Esomeprazol/farmacología , Hipertensión/tratamiento farmacológico , Nitratos/administración & dosificación , Administración Oral , Adulto , Animales , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Quimioterapia Combinada , Voluntarios Sanos , Humanos , Hipertensión/sangre , Hipertensión/fisiopatología , Masculino , Nitratos/farmacocinética , Inhibidores de la Bomba de Protones/farmacología , Ratas , Ratas Sprague-Dawley , Adulto Joven
16.
Redox Biol ; 10: 206-210, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27810735

RESUMEN

In humans dietary circulating nitrate accumulates rapidly in saliva through active transport in the salivary glands. By this mechanism resulting salivary nitrate concentrations are 10-20 times higher than in plasma. In the oral cavity nitrate is reduced by commensal bacteria to nitrite, which is subsequently swallowed and further metabolized to nitric oxide (NO) and other bioactive nitrogen oxides in blood and tissues. This entero-salivary circulation of nitrate is central in the various NO-like effects observed after ingestion of inorganic nitrate. The very same system has also been the focus of toxicologists studying potential carcinogenic effects of nitrite-dependent nitrosamine formation. Whether active transport of nitrate and accumulation in saliva occurs also in rodents is not entirely clear. Here we measured salivary and plasma levels of nitrate and nitrite in humans, rats and mice after administration of a standardized dose of nitrate. After oral (humans) or intraperitoneal (rodents) sodium nitrate administration (0.1mmol/kg), plasma nitrate levels increased markedly reaching ~300µM in all three species. In humans ingestion of nitrate was followed by a rapid increase in salivary nitrate to >6000µM, ie 20 times higher than those found in plasma. In contrast, in rats and mice salivary nitrate concentrations never exceeded the levels in plasma. Nitrite levels in saliva and plasma followed a similar pattern, ie marked increases in humans but modest elevations in rodents. In mice there was also no accumulation of nitrate in the salivary glands as measured directly in whole glands obtained after acute administration of nitrate. This study suggests that in contrast to humans, rats and mice do not actively concentrate circulating nitrate in saliva. These apparent species differences should be taken into consideration when studying the nitrate-nitrite-nitric oxide pathway in rodents, when calculating doses, exploring physiological, therapeutic and toxicological effects and comparing with human data.


Asunto(s)
Nitratos/sangre , Nitritos/sangre , Saliva/química , Administración Oral , Adulto , Animales , Femenino , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Persona de Mediana Edad , Nitratos/administración & dosificación , Ratas , Glándulas Salivales/metabolismo , Especificidad de la Especie , Investigación Biomédica Traslacional
17.
Free Radic Biol Med ; 99: 472-484, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27609225

RESUMEN

Xanthine oxidoreductase (XOR) is generally known as the final enzyme in purine metabolism and as a source of reactive oxygen species (ROS). In addition, this enzyme has been suggested to mediate nitric oxide (NO) formation via reduction of inorganic nitrate and nitrite. This NO synthase (NOS)-independent pathway for NO generation is of particular importance during certain conditions when NO bioavailability is diminished due to reduced activity of endothelial NOS (eNOS) or increased oxidative stress, including aging and cardiovascular disease. The exact interplay between NOS- and XOR-derived NO generation is not fully elucidated yet. The aim of the present study was to investigate if eNOS deficiency is associated with changes in XOR expression and activity and the possible impact on nitrite, NO and ROS homeostasis. Plasma levels of nitrate and nitrite were similar between eNOS deficient (eNOS-/-) and wildtype (wt) mice. XOR activity was upregulated in eNOS-/- compared with wt, but not in nNOS-/-, iNOS-/- or wt mice treated with the non-selective NOS inhibitor L-NAME. Following an acute dose of nitrate, plasma nitrite increased more in eNOS-/- compared with wt, and this augmented response was abolished by the selective XOR inhibitor febuxostat. Livers from eNOS-/- displayed higher nitrite reducing capacity compared with wt, and this effect was attenuated by febuxostat. Dietary supplementation with nitrate increased XOR expression and activity, but concomitantly reduced superoxide generation. The latter effect was also seen in vitro after nitrite administration. Treatment with febuxostat elevated blood pressure in eNOS-/-, but not in wt mice. A high dose of dietary nitrate reduced blood pressure in naïve eNOS-/- mice, and again this effect was abolished by febuxostat. In conclusion, eNOS deficiency is associated with an upregulation of XOR facilitating the nitrate-nitrite-NO pathway and decreasing the generation of ROS. This interplay between XOR and eNOS is proposed to play a significant role in NO homeostasis and blood pressure regulation.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico/sangre , Xantina Deshidrogenasa/genética , Animales , Presión Sanguínea/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Febuxostat/farmacología , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología , Nitratos/sangre , Nitratos/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/deficiencia , Nitritos/sangre , Nitritos/farmacología , Oxidación-Reducción , Transducción de Señal , Superóxidos/metabolismo , Xantina Deshidrogenasa/antagonistas & inhibidores , Xantina Deshidrogenasa/metabolismo
18.
Br J Pharmacol ; 173(14): 2290-302, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27160064

RESUMEN

BACKGROUND AND PURPOSE: NO deficiency and oxidative stress are crucially involved in the development or progression of cardiovascular disease, including hypertension and stroke. We have previously demonstrated that acute treatment with the newly discovered organic nitrate, 2-nitrate-1,3-dibuthoxypropan (NDBP), is associated with NO-like effects in the vasculature. This study aimed to further characterize the mechanism(s) and to elucidate the therapeutic potential in a model of hypertension and oxidative stress. EXPERIMENTAL APPROACH: A combination of ex vivo, in vitro and in vivo approaches was used to assess the effects of NDBP on vascular reactivity, NO release, NADPH oxidase activity and in a model of hypertension. KEY RESULTS: Ex vivo vascular studies demonstrated NDBP-mediated vasorelaxation in mesenteric resistance arteries, which was devoid of tolerance. In vitro studies using liver and kidney homogenates revealed dose-dependent and sustained NO generation by NDBP, which was attenuated by the xanthine oxidase inhibitor febuxostat. In addition, NDBP reduced NADPH oxidase activity in the liver and prevented angiotensin II-induced activation of NADPH oxidase in the kidney. In vivo studies showed that NDBP halted the progression of hypertension in mice with chronic angiotensin II infusion. This was associated with attenuated cardiac hypertrophy, and reduced NADPH oxidase-derived oxidative stress and fibrosis in the kidney and heart. CONCLUSION AND IMPLICATIONS: The novel organic nitrate NDBP halts the progression of angiotensin II-mediated hypertension. Mechanistically, our findings suggest that NDBP treatment is associated with sustained NO release and attenuated activity of NADPH oxidase, which to some extent requires functional xanthine oxidase.


Asunto(s)
Angiotensina II/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/prevención & control , Nitratos/farmacología , Óxido Nítrico/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Propano/análogos & derivados , Angiotensina II/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Hipertensión/inducido químicamente , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Nitratos/administración & dosificación , Propano/administración & dosificación , Propano/farmacología , Ratas , Ratas Wistar
19.
Mol Med ; 21(1): 749-757, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26349060

RESUMEN

Extracellular high-mobility group box 1 (HMGB1) (disulfide form), via activation of toll-like receptor 4 (TLR4)-dependent signaling, is a strong driver of pathologic inflammation in both acute and chronic conditions. Identification of selective inhibitors of HMGB1-TLR4 signaling could offer novel therapies that selectively target proximal endogenous activators of inflammation. A cell-based screening strategy led us to identify first generation HIV-protease inhibitors (PI) as potential inhibitors of HMGB1-TLR4 driven cytokine production. Here we report that the first-generation HIV-PI saquinavir (SQV), as well as a newly identified mammalian protease inhibitor STO33438 (334), potently block disulfide HMGB1-induced TLR4 activation, as assayed by the production of TNF-α by human monocyte-derived macrophages (THP-1). We further report on the identification of mammalian cathepsin V, a protease, as a novel target of these inhibitors. Cellular as well as recombinant protein studies show that the mechanism of action involves a direct interaction between cathepsin V with TLR4 and its adaptor protein MyD88. Treatment with SQV, 334 or the known cathepsin inhibitor SID26681509 (SID) significantly improved survival in murine models of sepsis and reduced liver damage following warm liver ischemia/reperfusion (I/R) models, both characterized by strong HMGB1-TLR4 driven pathology. The current study demonstrates a novel role for cathepsin V in TLR4 signaling and implicates cathepsin V as a novel target for first-generation HIV-PI compounds. The identification of cathepsin V as a target to block HMGB1-TLR4-driven inflammation could allow for a rapid transition of the discovery from the bench to the bedside. Disulfide HMGB1 drives pathologic inflammation in many models by activating signaling through TLR4. Cell-based screening identified the mammalian protease cathepsin V as a novel therapeutic target to inhibit TLR4-mediated inflammation induced by extracellular HMGB1 (disulfide form). We identified two protease inhibitors (PIs) that block cathepsin V and thereby inhibit disulfide HMGB1-induced TLR4 activation: saquinavir (SQV), a first-generation PI targeting viral HIV protease and STO33438 (334), targeting mammalian proteases. We discovered that cathepsin V binds TLR4 under basal and HMGB1-stimulated conditions, but dissociates in the presence of SQV over time. Thus cathepsin V is a novel target for first-generation HIV PIs and represents a potential therapeutic target of pathologic inflammation.

20.
Free Radic Biol Med ; 87: 252-62, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26159506

RESUMEN

Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors.


Asunto(s)
Radicales Libres/metabolismo , Hipertensión Renovascular/tratamiento farmacológico , Nitritos/metabolismo , S-Nitrosotioles/metabolismo , Animales , Antihipertensivos/administración & dosificación , Antioxidantes/administración & dosificación , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Humanos , Hipertensión Renovascular/metabolismo , Hipertensión Renovascular/patología , Ratas , Nitrito de Sodio/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...