Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oecologia ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898337

RESUMEN

The interplay of positive and negative species interactions controls species assembly in communities. Dryland plant communities, such as savannas, are important to global biodiversity and ecosystem functioning. Sandhill oaks in xeric savannas of the southeastern United States can facilitate longleaf pine by enhancing seedling survival, but the effects of oaks on recruitment and growth of longleaf pine have not been examined. We censused, mapped, and monitored nine contiguous hectares of longleaf pine in a xeric savanna to quantify oak-pine facilitation, and to examine other factors impacting recruitment, such as vegetation cover and longleaf pine tree density. We found that newly recruited seedlings and grass stage longleaf pines were more abundant in oak-dominated areas where densities were 230% (newly recruited seedlings) and 360% (grass stage) greater from lowest to highest oak neighborhood densities. Longleaf pine also grew faster under higher oak density. Longleaf pine recruitment was lowest under longleaf pine canopies. Mortality of grass stage and bolt stage longleaf pine was low (~1.0% yr-1) in the census interval without fire. Overall, our findings highlight the complex interactions between pines and oaks-two economically and ecologically important genera globally. Xeric oaks should be incorporated as a management option for conservation and restoration of longleaf pine ecosystems.

2.
Polymers (Basel) ; 12(5)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443668

RESUMEN

This study was focused on synthesizing, characterizing and evaluating the biological potential of Polyelectrolyte Complex Nanoparticles (PECNs) loaded with the antibiotic ampicillin. For this, the PECNs were produced initially by polyelectrolytic complexation (bottom-up method) and subsequently subjected to ultra-high pressure homogenization-UHPH (top-down method). The synthetic polymeric materials corresponding to the sodium salt of poly(maleic acid-alt-octadecene) (PAM-18Na) and the chloride salt of Eudragit E-100 (EuCl) were used, where the order of polyelectrolyte complexation, the polyelectrolyte ratio and the UHPH conditions on the PECNs features were evaluated. Likewise, PECNs were physicochemically characterized through particle size, polydispersity index, zeta potential, pH and encapsulation efficiency, whereas the antimicrobial effect was evaluated by means of the broth microdilution method employing ampicillin sensitive and resistant S. aureus strains. The results showed that the classical method of polyelectrolyte complexation (bottom-up) led to obtain polymeric complexes with large particle size and high polydispersity, where the 1:1 ratio between the titrant and receptor polyelectrolyte was the most critical condition. In contrast, the UHPH technique (top-down method) proved high performance to produce uniform polymeric complexes on the nanometric scale (particle size < 200 nm and PDI < 0.3). Finally, it was found there was a moderate increase in antimicrobial activity when ampicillin was loaded into the PECNs.

3.
Pharmaceuticals (Basel) ; 13(4)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224877

RESUMEN

In the past decade, pharmaceutical nanotechnology has proven to be a promising alternative for improving the physicochemical and biopharmaceutical features for conventional pharmaceutical drug formulations. The goal of this study was to develop, characterize, and evaluate the in vitro and in vivo release of the model drug carbamazepine (CBZ) from two emulsified formulations with different droplet sizes (coarse and nanometric). Briefly, oil-in-water emulsions were developed using (i) Sacha inchi oil, ultrapure water, TweenTM 80, and SpanTM 80 as surfactants, (ii) methyl-paraben and propyl-paraben as preservatives, and (iii) CBZ as a nonpolar model drug. The coarse and nanometric emulsions were prepared by rotor-stator dispersion and ultra-high-pressure homogenization (UHPH), respectively. The in vitro drug release studies were conducted by dialysis, whereas the in vivo drug release was evaluated in New Zealand breed rabbits. The results showed that nanoemulsions were physically more stable than coarse emulsions, and that CBZ had a very low release for in vitro determination (<2%), and a release of 20% in the in vivo study. However, it was found that nanoemulsions could significantly increase drug absorption time from 12 h to 45 min.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...