Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 12(6): 887-892, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34141066

RESUMEN

Remodelin is a putative small molecule inhibitor of the RNA acetyltransferase NAT10 which has shown preclinical efficacy in models of the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Here we evaluate remodelin's assay interference characteristics and effects on NAT10-catalyzed RNA cytidine acetylation. We find the remodelin chemotype constitutes a cryptic assay interference compound, which does not react with small molecule thiols but demonstrates protein reactivity in ALARM NMR and proteome-wide affinity profiling assays. Biophysical analyses find no direct evidence for interaction of remodelin with the NAT10 acetyltransferase active site. Cellular studies verify that N4-acetylcytidine (ac4C) is a nonredundant target of NAT10 activity in human cell lines and find that this RNA modification is not affected by remodelin treatment in several orthogonal assays. These studies display the potential for remodelin's chemotype to interact with multiple protein targets in cells and indicate remodelin should not be applied as a specific chemical inhibitor of NAT10-catalyzed RNA acetylation.

2.
Cell Chem Biol ; 27(3): 322-333.e5, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31836350

RESUMEN

Acyl-coenzyme A (CoA)/protein interactions are essential for life. Despite this importance, their global scope and selectivity remains undefined. Here, we describe CATNIP (CoA/AcetylTraNsferase Interaction Profiling), a chemoproteomic platform for the high-throughput analysis of acyl-CoA/protein interactions in endogenous proteomes. First, we apply CATNIP to identify acetyl-CoA-binding proteins through unbiased clustering of competitive dose-response data. Next, we use this method to profile the selectivity of acyl-CoA/protein interactions, leading to the identification of specific acyl-CoA engagement signatures. Finally, we apply systems-level analyses to assess the features of protein networks that may interact with acyl-CoAs, and use a strategy for high-confidence proteomic annotation of acetyl-CoA-binding proteins to identify a site of non-enzymatic acylation in the NAT10 acetyltransferase domain that is likely driven by acyl-CoA binding. Overall, our studies illustrate how chemoproteomics and systems biology can be integrated to understand the roles of acyl-CoA metabolism in biology and disease.


Asunto(s)
Acilcoenzima A/química , Mapas de Interacción de Proteínas , Proteínas/química , Proteómica , Acilcoenzima A/metabolismo , Humanos , Proteínas/metabolismo
3.
Curr Opin Chem Biol ; 51: 30-39, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30884380

RESUMEN

Altered metabolite levels can drive epigenetic changes critical to development and disease. However, in many cases the specific protein-metabolite interactions that underlie this process remain enigmatic. In this review, we make the case that this fundamental missing information may be discovered by applying the tools of modern drug target validation to study endogenous metabolite pharmacology. We detail examples in which chemical proteomics has been applied to gain new insights into reversible and covalent metabolite signaling mechanisms, using acetyl-CoA and fumarate as case studies. Finally, we provide a brief survey of nascent chemical biology methods whose application to the study of endogenous metabolite pharmacology may further advance the field.


Asunto(s)
Epigénesis Genética , Preparaciones Farmacéuticas/metabolismo , Acetilcoenzima A/metabolismo , Fumaratos/metabolismo , Humanos , Proteómica , Transducción de Señal
4.
ACS Chem Biol ; 12(12): 2922-2926, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29039931

RESUMEN

The human acetyltransferase NAT10 has recently been shown to catalyze formation of N4-acetylcytidine (ac4C), a minor nucleobase known to alter RNA structure and function. In order to better understand the role of RNA acetyltransferases in biology and disease, here we report the development and application of chemical methods to study ac4C. First, we demonstrate that ac4C can be conjugated to carrier proteins using optimized protocols. Next, we describe methods to access ac4C-containing RNAs, enabling the screening of anti-ac4C antibodies. Finally, we validate the specificity of an optimized ac4C affinity reagent in the context of cellular RNA by demonstrating its ability to accurately report on chemical deacetylation of ac4C. Overall, these studies provide a powerful new tool for studying ac4C in biological contexts, as well as new insights into the stability and half-life of this highly conserved RNA modification. More broadly, they demonstrate how chemical reactivity may be exploited to aid the development and validation of nucleobase-targeting affinity reagents designed to target the emerging epitranscriptome.


Asunto(s)
Citidina/análogos & derivados , Citidina/química , Citidina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Sondas ARN , ARN Ribosómico 18S/genética , Transcripción Genética
5.
Cell Chem Biol ; 24(2): 231-242, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28163016

RESUMEN

Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease.


Asunto(s)
Ésteres/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Acilación , Ésteres/química , Humanos , Modelos Moleculares , Estructura Molecular , Proteómica , Compuestos de Sulfhidrilo/química , Células Tumorales Cultivadas
6.
J Biol Chem ; 292(8): 3312-3322, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28077572

RESUMEN

Cellular metabolism dynamically regulates the epigenome via availability of the metabolite substrates of chromatin-modifying enzymes. The impact of diet on the metabolism-epigenome axis is poorly understood but could alter gene expression and influence metabolic health. ATP citrate-lyase produces acetyl-CoA in the nucleus and cytosol and regulates histone acetylation levels in many cell types. Consumption of a high-fat diet (HFD) results in suppression of ATP citrate-lyase levels in tissues such as adipose and liver, but the impact of diet on acetyl-CoA and histone acetylation in these tissues remains unknown. Here we examined the effects of HFD on levels of acyl-CoAs and histone acetylation in mouse white adipose tissue (WAT), liver, and pancreas. We report that mice consuming a HFD have reduced levels of acetyl-CoA and/or acetyl-CoA:CoA ratio in these tissues. In WAT and the pancreas, HFD also impacted the levels of histone acetylation; in particular, histone H3 lysine 23 acetylation was lower in HFD-fed mice. Genetic deletion of Acly in cultured adipocytes also suppressed acetyl-CoA and histone acetylation levels. In the liver, no significant effects on histone acetylation were observed with a HFD despite lower acetyl-CoA levels. Intriguingly, acetylation of several histone lysines correlated with the acetyl-CoA: (iso)butyryl-CoA ratio in liver. Butyryl-CoA and isobutyryl-CoA interacted with the acetyltransferase P300/CBP-associated factor (PCAF) in liver lysates and inhibited its activity in vitro This study thus provides evidence that diet can impact tissue acyl-CoA and histone acetylation levels and that acetyl-CoA abundance correlates with acetylation of specific histone lysines in WAT but not in the liver.


Asunto(s)
Acilcoenzima A/metabolismo , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Histonas/metabolismo , Hígado/metabolismo , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilación , Acilcoenzima A/análisis , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Histonas/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/metabolismo
7.
J Am Chem Soc ; 138(20): 6388-91, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27149119

RESUMEN

Lysine acetyltransferases (KATs) are key mediators of cell signaling. Methods capable of providing new insights into their regulation thus constitute an important goal. Here we report an optimized platform for profiling KAT-ligand interactions in complex proteomes using inhibitor-functionalized capture resins. This approach greatly expands the scope of KATs, KAT complexes, and CoA-dependent enzymes accessible to chemoproteomic methods. This enhanced profiling platform is then applied in the most comprehensive analysis to date of KAT inhibition by the feedback metabolite CoA. Our studies reveal that members of the KAT superfamily possess a spectrum of sensitivity to CoA and highlight NAT10 as a novel KAT that may be susceptible to metabolic feedback inhibition. This platform provides a powerful tool to define the potency and selectivity of reversible stimuli, such as small molecules and metabolites, that regulate KAT-dependent signaling.


Asunto(s)
Lisina Acetiltransferasas/metabolismo , Catálisis , Cromatografía Liquida , Coenzima A/metabolismo , Células HeLa , Humanos , Transducción de Señal , Espectrometría de Masas en Tándem
8.
ACS Chem Biol ; 11(3): 734-41, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26428393

RESUMEN

Lysine acetyltransferases (KATs) are critical regulators of signaling in many diseases, including cancer. A major challenge in establishing the targetable functions of KATs in disease is a lack of well-characterized, cell-active KAT inhibitors. To confront this challenge, here we report a microfluidic mobility shift platform for the discovery and characterization of small molecule KAT inhibitors. Novel fluorescent peptide substrates were developed for four well-known KAT enzymes (p300, Crebbp, Morf, and Gcn5). Enzyme-catalyzed acetylation alters the electrophoretic mobility of these peptides in a microfluidic chip, allowing facile and direct monitoring of KAT activity. A pilot screen was used to demonstrate the utility of microfluidic mobility shift profiling to identify known and novel modulators of KAT activity. Real-time kinetic monitoring of KAT activity revealed that garcinol, a natural product KAT inhibitor used in cellular studies, exhibits time-dependent and detergent-sensitive inhibition, consistent with an aggregation-based mechanism. In contrast, the cell-permeable bisubstrate inhibitor Tat-CoA exhibited potent and time-independent KAT inhibition, highlighting its potential utility as a cellular inhibitor of KAT activity. These studies define microfluidic mobility shift profiling as a powerful platform for the discovery and characterization of small molecule inhibitors of KAT activity, and provide mechanistic insights potentially important for the application of KAT inhibitors in cellular contexts.


Asunto(s)
Lisina Acetiltransferasas/metabolismo , Técnicas Analíticas Microfluídicas , Acetilación/efectos de los fármacos , Lisina Acetiltransferasas/genética , Bibliotecas de Moléculas Pequeñas
9.
Chem Biol ; 22(8): 1030-1039, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26190825

RESUMEN

The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between palmitoyl coenzyme A (palmitoyl-CoA) and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular histone acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling.


Asunto(s)
Acilcoenzima A/metabolismo , N-Acetiltransferasa de Aminoácidos/metabolismo , Histona Acetiltransferasas/metabolismo , Lisina/metabolismo , Acetilación , Acilcoenzima A/biosíntesis , Acilcoenzima A/química , N-Acetiltransferasa de Aminoácidos/química , Células HEK293 , Histona Acetiltransferasas/química , Humanos , Cinética , Lisina/química , Modelos Químicos , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Proteómica
10.
ACS Chem Biol ; 10(1): 85-94, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25591746

RESUMEN

Long known for their role in histone acetylation, recent studies have demonstrated that lysine acetyltransferases also carry out distinct "orphan" functions. These activities impact a wide range of biological phenomena including metabolism, RNA modification, nuclear morphology, and mitochondrial function. Here, we review the discovery and characterization of orphan lysine acetyltransferase functions. In addition to highlighting the evidence and biological role for these functions in human disease, we discuss the part emerging chemical tools may play in investigating this versatile enzyme superfamily.


Asunto(s)
Acetiltransferasas/farmacología , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acetil-CoA C-Acetiltransferasa/química , Acetil-CoA C-Acetiltransferasa/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Animales , Humanos , Acetiltransferasa E N-Terminal/química , Acetiltransferasa E N-Terminal/metabolismo , Acetiltransferasas N-Terminal , Procesamiento Postranscripcional del ARN , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo
11.
J Am Chem Soc ; 136(24): 8669-76, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24836640

RESUMEN

Lysine acetyltransferases (KATs) play a critical role in the regulation of gene expression, metabolism, and other key cellular functions. One shortcoming of traditional KAT assays is their inability to study KAT activity in complex settings, a limitation that hinders efforts at KAT discovery, characterization, and inhibitor development. To address this challenge, here we describe a suite of cofactor-based affinity probes capable of profiling KAT activity in biological contexts. Conversion of KAT bisubstrate inhibitors to clickable photoaffinity probes enables the selective covalent labeling of three phylogenetically distinct families of KAT enzymes. Cofactor-based affinity probes report on KAT activity in cell lysates, where KATs exist as multiprotein complexes. Chemical affinity purification and unbiased LC-MS/MS profiling highlights an expanded landscape of orphan lysine acetyltransferases present in the human genome and provides insight into the global selectivity and sensitivity of CoA-based proteomic probes that will guide future applications. Chemoproteomic profiling provides a powerful method to study the molecular interactions of KATs in native contexts and will aid investigations into the role of KATs in cell state and disease.


Asunto(s)
Acetiltransferasas/metabolismo , Lisina/metabolismo , Proteómica , Acetilación , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/química , Biocatálisis , Cromatografía Liquida , Células HeLa , Humanos , Estructura Molecular , Espectrometría de Masas en Tándem , Células Tumorales Cultivadas
12.
J Org Chem ; 78(1): 124-33, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23106218

RESUMEN

Cyclic Py-Im polyamides containing two GABA turn units exhibit enhanced DNA binding affinity, but extensive studies of their biological properties have been hindered due to synthetic inaccessibility. A facile modular approach toward cyclic polyamides has been developed via microwave-assisted solid-phase synthesis of hairpin amino acid oligomer intermediates followed by macrocyclization. A focused library of cyclic polyamides 1-7 targeted to the androgen response element (ARE) and the estrogen response element (ERE) were synthesized in 12-17% overall yield. The Fmoc protection strategy also allows for selective modifications on the GABA turn units that have been shown to improve cellular uptake properties. The DNA binding affinities of a library of cyclic polyamides were measured by DNA thermal denaturation assays and compared to the corresponding hairpin polyamides. Fluorescein-labeled cyclic polyamides have been synthesized and imaged via confocal microscopy in A549 and T47D cell lines. The IC(50) values of compounds 1-7 and 9-11 were determined, revealing remarkably varying levels of cytotoxicity.


Asunto(s)
Aminoácidos/química , Fluoresceína/química , Imidazoles/síntesis química , Nylons/química , Nylons/síntesis química , Pirroles/síntesis química , Ácido gamma-Aminobutírico/química , Línea Celular , Ciclización , Humanos , Imidazoles/química , Concentración 50 Inhibidora , Microondas , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Pirroles/química , Técnicas de Síntesis en Fase Sólida
13.
Phys Rev Lett ; 109(17): 175002, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23215195

RESUMEN

The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum.

14.
J Med Chem ; 55(11): 5425-32, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22607187

RESUMEN

To optimize the biological activity of pyrrole-imidazole polyamide DNA-binding molecules, we characterized the aggregation propensity of these compounds through dynamic light scattering and fractional solubility analysis. Nearly all studied polyamides were found to form measurable particles 50-500 nm in size under biologically relevant conditions, while HPLC-based analyses revealed solubility trends in both core sequences and peripheral substituents that did not correlate with overall ionic charge. The solubility of both hairpin and cyclic polyamides was increased upon addition of carbohydrate solubilizing agents, in particular, 2-hydroxypropyl-ß-cyclodextrin (HpßCD). In mice, the use of HpßCD allowed for improved injection conditions and subsequent investigations of the availability of polyamides in mouse plasma to human cells. The results of these studies will influence the further design of Py-Im polyamides and facilitate their study in animal models.


Asunto(s)
Imidazoles/química , Nylons/química , Pirroles/química , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Disponibilidad Biológica , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Humanos , Imidazoles/sangre , Inyecciones Intraperitoneales , Luz , Ratones , Ratones Endogámicos C57BL , Conformación Molecular , Nylons/farmacocinética , Pirroles/sangre , Dispersión de Radiación , Solubilidad , beta-Ciclodextrinas/química
15.
Nucleic Acids Res ; 40(5): 2345-56, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22080545

RESUMEN

Pyrrole-imidazole (Py-Im) hairpin polyamides are a class of programmable, sequence-specific DNA binding oligomers capable of disrupting protein-DNA interactions and modulating gene expression in living cells. Methods to control the cellular uptake and nuclear localization of these compounds are essential to their application as molecular probes or therapeutic agents. Here, we explore modifications of the hairpin γ-aminobutyric acid turn unit as a means to enhance cellular uptake and biological activity. Remarkably, introduction of a simple aryl group at the turn potentiates the biological effects of a polyamide targeting the sequence 5'-WGWWCW-3' (W =A/T) by up to two orders of magnitude. Confocal microscopy and quantitative flow cytometry analysis suggest this enhanced potency is due to increased nuclear uptake. Finally, we explore the generality of this approach and find that aryl-turn modifications enhance the uptake of all polyamides tested, while having a variable effect on the upper limit of polyamide nuclear accumulation. Overall this provides a step forward for controlling the intracellular concentration of Py-Im polyamides that will prove valuable for future applications in which biological potency is essential.


Asunto(s)
Imidazoles/química , Nylons/química , Pirroles/química , Transporte Biológico , Línea Celular , ADN/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica , Humanos , Microscopía Fluorescente , Nylons/síntesis química , Nylons/metabolismo , Nylons/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(5 Pt 2): 056320, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16383758

RESUMEN

We present direct numerical simulations of dynamo action in a forced Roberts flow. The behavior of the dynamo is followed as the mechanical Reynolds number is increased, starting from the laminar case until a turbulent regime is reached. The critical magnetic Reynolds for dynamo action is found, and in the turbulent flow it is observed to be nearly independent on the magnetic Prandtl number in the range from approximately 0.3 to approximately 0.1. Also the dependence of this threshold with the amount of mechanical helicity in the flow is studied. For the different regimes found, the configuration of the magnetic and velocity fields in the saturated steady state are discussed.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 046304, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15903783

RESUMEN

We present direct numerical simulations and alpha -model simulations of four familiar three-dimensional magnetohydrodynamic (MHD) turbulence effects: selective decay, dynamic alignment, inverse cascade of magnetic helicity, and the helical dynamo effect. The MHD alpha model is shown to capture the long-wavelength spectra in all these problems, allowing for a significant reduction of computer time and memory at the same kinetic and magnetic Reynolds numbers. In the helical dynamo, not only does the alpha model correctly reproduce the growth rate of magnetic energy during the kinematic regime, it also captures the nonlinear saturation level and the late generation of a large scale magnetic field by the helical turbulence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...