Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Ecol Evol ; 13(2): e9771, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789349

RESUMEN

Wildfires are an increasing concern due to rising temperatures and incidence of droughts associated with changing climate, poor land management, and direct human interference. Most studies of the impact of fire on temperate heathland and bog examined the consequences of controlled or prescribed burning. Less is known about the impacts of uncontrolled wildfires on sites designated for their conservation value. We examined the initial impact and short-term trajectory (3.5 years) of cool temperate peatland plant and arthropod communities on designated upland sites in Northern Ireland following wildfires, that is, unplanned with respect to where and when they occur, severity, and duration. These near simultaneous wildfires were often due to a failure to control prescribed burns. Wildfires were associated with a loss of blanket bog and heath indicator species. Broad vegetation groups showed initial recovery characterized by a decrease in bare ground and increasing cover of shrub species and bryophytes. However, at a species level, Sphagnum spp and bryophyte communities, which are central to peatland ecosystem functioning, showed no sign of recovery to prefire composition. Rather, bryophyte communities became more divergent over the course of the study and were mainly characterized by increased abundance of the alien pioneer acrocarp Campylopus introflexus. Similarly, composition of arthropod communities (ground beetles and spiders) differed between burnt and unburnt areas and showed no evidence of a return to species composition in unburnt areas. The nationally rare beetle Carabus nitens was more common in the aftermath of wildfire. Synthesis. Whilst, long-term recovery was not investigated, these short-term changes suggest enduring detrimental impacts on the distinctive communities associated with peatlands, primarily through the loss of Sphagnum spp., affecting ecosystem services such as carbon sequestration and water and soil retention. It may not be possible to restore exact prefire species composition of plant and animal communities. We suggest a precautionary approach involving management of upland vegetation, public education, and vigilance, to prevent further wildfires and protect these key upland habitats.

2.
Glob Chang Biol ; 28(18): 5368-5384, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35706099

RESUMEN

Invasive species pose one of the greatest global threats to biodiversity. There has been a long history of importing coevolved natural enemies to act as biological control agents to try to suppress densities of invasive species, with historically limited success and frequent adverse impacts on native biodiversity. Our understanding of the processes and drivers of successful biological control has been focussed on invertebrates and is evidently limited and potentially ill-suited with respect to biological control of vertebrate populations. The restoration of native vertebrate predator populations provides a promising nature-based solution for slowing, halting, or even reversing the spread of some invasive vertebrates over spatial scales relevant to the management of wildlife populations. Here, we first review the growing literature and data from the pine marten-red and grey squirrel system in Europe. We synthesise a multi-decadal dataset to show that the recovery of a native predator has resulted in rapid, landscape-scale declines of an established invasive species. We then use the model system, predator-prey interaction theory, and examples from the literature to develop ecological theory relating to natural biological control in vertebrates and evolutionary processes in native-invasive predator-prey interactions. We find support for the hypotheses that evolutionary naivety of invasive species to native predators and lack of local refuges results in higher predation of naive compared to coevolved prey. We apply lessons learnt from the marten-squirrel model system to examine the plausibility of specific native predator solutions to some of the Earth's most devastating invasive vertebrates. Given the evidence, we conclude that depletion of vertebrate predator populations has increased ecosystem vulnerability to invasions and thus facilitated the spread of invasive species. Therefore, restoration of vertebrate predator populations is an underappreciated, fundamental, nature-based solution to the crisis of invasive species and should be a priority for vertebrate invasive species management globally.


Asunto(s)
Ecosistema , Mustelidae , Animales , Europa (Continente) , Especies Introducidas , Conducta Predatoria , Sciuridae
3.
Ecol Evol ; 12(3): e8500, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342587

RESUMEN

The introduction of non-native species to new locations is a growing global phenomenon with major negative effects on native species and biodiversity. Such introductions potentially bring competitors into contact leading to partial or total species replacements. This creates an opportunity to study novel species interactions as they occur, with the potential to address the strength of inter- and intraspecific interactions, most notably competition. Such potential has often not been realized, however, due to the difficulties inherent in detecting rapid and spatially expansive species interactions under natural field conditions. The invasive amphipod crustacean Gammarus pulex has replaced a native species, Gammarus duebeni celticus, in river and lake systems across Europe. This replacement process is at least partially driven by differential parasitism, cannibalism, and intraguild predation, but the role of interspecific competition has yet to be resolved. Here, we examine how abundance of an invasive species may affect spatial niche breadth of a native congeneric species. We base our analyses of niche breadth on ordination and factor analysis of biological community and physical parameters, respectively, constituting a summative, multidimensional approach to niche breadth along environmental gradients. Results derived from biological and environmental niche criteria were consistent, although interspecific effects were stronger using the biological niche approach. We show that the niche breadth of the native species is constrained as abundance of the invader increases, but the converse effect does not occur. We conclude that the interaction between invasive G. pulex and native G. d. celticus under natural conditions is consistent with strong interspecific competition whereby a native, weaker competitor is replaced by a superior invasive competitor. This study indicates a strong role of interspecific competition, alongside other known interactions such as differential intraguild predation, in rapid and expansive species replacements following biological invasions.

5.
Sci Rep ; 12(1): 200, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997035

RESUMEN

Isotopic techniques have been used to study phenomena in the geological, environmental, and ecological sciences. For example, isotopic values of multiple elements elucidate the pathways energy and nutrients take in the environment. Isoscapes interpolate isotopic values across a geographical surface and are used to study environmental processes in space and time. Thus, isoscapes can reveal ecological shifts at local scales, and show distribution thresholds in the wider environment at the macro-scale. This study demonstrates a further application of isoscapes, using soil isoscapes of 13C/12C and 15N/14N as an environmental baseline, to understand variation in trophic ecology across a population of Eurasian badgers (Meles meles) at a regional scale. The use of soil isoscapes reduced error, and elevated the statistical signal, where aggregated badger hairs were used, and where individuals were identified using genetic microarray analysis. Stable isotope values were affected by land-use type, elevation, and meteorology. Badgers in lowland habitats had diets richer in protein and were adversely affected by poor weather conditions in all land classes. It is concluded that soil isoscapes are an effective way of reducing confounding biases in macroscale, isotopic studies. The method elucidated variation in the trophic and spatial ecology of economically important taxa at a landscape level. These results have implications for the management of badgers and other carnivores with omnivorous tendencies in heterogeneous landscapes.

6.
Mol Ecol ; 31(5): 1487-1503, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995383

RESUMEN

Understanding the evolution of local adaptations is a central aim of evolutionary biology and key for the identification of unique populations and lineages of conservation relevance. By combining RAD sequencing and whole-genome sequencing, we identify genetic signatures of local adaptation in mountain hares (Lepus timidus) from isolated and distinctive habitats of its wide distribution: Ireland, the Alps and Fennoscandia. Demographic modelling suggested that the split of these mountain hares occurred around 20 thousand years ago, providing the opportunity to study adaptive evolution over a short timescale. Using genome-wide scans, we identified signatures of extreme differentiation among hares from distinct geographic areas that overlap with area-specific selective sweeps, suggesting targets for local adaptation. Several identified candidate genes are associated with traits related to the uniqueness of the different environments inhabited by the three groups of mountain hares, including coat colour, ability to live at high altitudes and variation in body size. In Irish mountain hares, a variant of ASIP, a gene previously implicated in introgression-driven winter coat colour variation in mountain and snowshoe hares (L. americanus), may underlie brown winter coats, reinforcing the repeated nature of evolution at ASIP moulding adaptive seasonal colouration. Comparative genomic analyses across several hare species suggested that mountain hares' adaptive variants appear predominantly species-specific. However, using coalescent simulations, we also show instances where the candidate adaptive variants have been introduced via introgressive hybridization. Our study shows that standing adaptive variation, including that introgressed from other species, was a crucial component of the post-glacial dynamics of species.


Asunto(s)
Liebres , Aclimatación , Adaptación Fisiológica/genética , Animales , Liebres/genética , Estaciones del Año , Especificidad de la Especie
7.
Pharmacy (Basel) ; 9(4)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34941623

RESUMEN

PURPOSE: Staphylococcus aureus is a leading cause of bacteremia with a 30-day mortality of 20%. This study evaluated outcomes after implementation of a pharmacist-driven Staphylococcus aureus bacteremia (SAB) initiative in a community hospital. METHODS: This retrospective cohort analysis compared patients admitted with SAB between May 2015 and April 2018 (intervention group) to those admitted between May 2012 and April 2015 (historical control group). Pharmacists were notified of and responded to blood cultures positive for Staphylococcus aureus by contacting provider(s) with a bundle of recommendations. Components of the SAB bundle included prompt source control, selection of appropriate intravenous antibiotics, appropriate duration of therapy, repeat blood cultures, echocardiography, and infectious diseases consult. Demographics (age, gender, and race) were collected at baseline. Primary outcome was in-hospital mortality. Compliance with bundle components was also assessed. RESULTS: Eighty-three patients in the control group and 110 patients in the intervention group were included in this study. Demographics were similar at baseline. In-hospital mortality was lower in the intervention group (3.6% vs. 15.7%; p = 0.0033). Bundle compliance was greater in the intervention group (69.1% vs. 39.8%; p < 0.0001). CONCLUSIONS: We observed a significant reduction in in-hospital mortality and increased treatment bundle compliance in the intervention cohort with implementation of a pharmacist-driven SAB initiative. Pharmacists' participation in the care of SAB patients in the form of recommending adherence to treatment bundle components drastically improved clinical outcomes. Widespread adoption and implementation of similar practice models at other institutions may reduce in-hospital mortality for this relatively common and life-threatening infection.

8.
Glob Chang Biol ; 27(16): 3732-3740, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33993582

RESUMEN

Animal populations at northern latitudes may have cyclical dynamics that are degraded by climate change leading to trophic cascade. Hare populations at more southerly latitudes are characterized by dramatic declines in abundance associated with agricultural intensification. We focus on the impact of historical climatic and agricultural change on a mid-latitude population of mountain hares, Lepus timidus hibernicus. Using game bag records from multiple sites throughout Ireland, the hare population index exhibited a distinct regime shift. Contrary to expectations, there was a dynamical structure typical of northern latitude hare populations from 1853 to 1908, during which numbers were stable but cyclic with a periodicity of 8 years. This regime was replaced by dynamics more typical of southern latitude hare populations from 1909 to 1970, in which cycles were lost and numbers declined dramatically. Destabilization of the autumn North Atlantic Oscillation (NAO) led to the collapse of similar cycles in the hare population, coincident with the onset of agricultural intensification (a shift from small-to-large farms) in the first half of the 20th century. Similar, but more recent regime shifts have been observed in Arctic ecosystems and attributed to anthropogenic climate change. The present study suggests such shifts may have occurred at lower latitudes more than a century ago during the very early 20th century. It seems likely that similar tipping points in the population collapse of other farmland species may have occurred similarly early but went undocumented. As northern systems are increasingly impacted by climate change and probable expansion of agriculture, the interaction of these processes is likely to disrupt the pulsed flow of resources from cyclic populations impacting ecosystem function.


Asunto(s)
Liebres , Agricultura , Animales , Regiones Árticas , Ecosistema , Irlanda , Dinámica Poblacional
9.
J Anim Ecol ; 90(4): 780-783, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33821481

RESUMEN

IN FOCUS: Edwards, P. D., Frenette-Ling, C., Palme, R., & Boonstra, R. (2021). Social density suppresses GnRH expression and reduces reproductivity in voles: A mechanism for population self-regulation. Journal of Animal Ecology, 90, 784-795. Intrinsic population processes are important in the regulation of populations of small rodents, including those which display multiannual cycles. By measuring reproductive parameters, faecal androgen metabolites, and gene expression and DNA methylation in the CNS of juvenile voles, this paper demonstrates that suppression of reproduction occurs in female voles at high density compared to low density in enclosures, and that this maternal, epigenetic effect is also apparent in their offspring. This suggsests that direct density dependence influences reproduction and, hence, immediate rate of population growth, while gene expression mediated by DNA methylation blocking transcription, may have a delayed density-dependent effect in juveniles. Both direct and delayed density dependence are necessary to generate multiannual population cycles. Edwards et al. (2021) break new ground in demonstrating the molecular and physiological basis of variation in population dynamics of small mammals ranging from multiannual cycles to stability that have fascinated researchers for nearly a century.


Asunto(s)
Roedores , Autocontrol , Animales , Arvicolinae/genética , Femenino , Densidad de Población , Dinámica Poblacional , Reproducción
10.
J Am Pharm Assoc (2003) ; 60(5): e40-e43, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280023

RESUMEN

OBJECTIVE: Stewardship efforts within institutions are commonplace, but fewer programs exist in community health care settings. Existing efforts focus on improving appropriate prescribing; however, clinicians must consider the use of antibiotics without a prescription as a contributor to antibiotic resistance. The objective of this article is to report observed methods of antibiotic self-prescription within the United States. DATA SOURCES: A Medline search was conducted to identify stewardship efforts within the community health care setting. The authors visited nonpharmacy locations and performed Internet searches to assess the feasibility of acquiring antibiotics without a prescription. Nonpharmacy locations within Nashville, TN, were visited in 2016. SUMMARY: Published literature, patient interactions, experiences at markets and pet stores, and Internet searches confirmed the availability of antibiotics without a prescription. Thirteen antimicrobial agents were found locally, and 31 additional agents were available via Internet sources. Literature searches revealed a lack of any completed research specific to self-prescribing and acquisition of antibiotics in the community setting or its effect on antibiotic resistance. CONCLUSION: Combating antibiotic resistance in the community setting presents unique challenges. Further research is necessary to determine the impact of self-prescription on patients' outcomes. When designing a community stewardship program, patients' ability to self-prescribe antibiotics should be taken into account and addressed.


Asunto(s)
Programas de Optimización del Uso de los Antimicrobianos , Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana , Humanos , Prescripciones , Atención Primaria de Salud
11.
R Soc Open Sci ; 7(2): 191841, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32257340

RESUMEN

Invasive species pose a serious threat to native species. In Europe, invasive grey squirrels (Sciurus carolinensis) have replaced native red squirrels (Sciurus vulgaris) in locations across Britain, Ireland and Italy. The European pine marten (Martes martes) can reverse the replacement of red squirrels by grey squirrels, but the underlying mechanism of how pine martens suppress grey squirrels is little understood. Research suggests the reversal process is driven by direct predation, but why the native red squirrel may be less susceptible than the invasive grey squirrel to predation by a commonly shared native predator, is unknown. A behavioural difference may exist with the native sciurid being more effective at avoiding predation by the pine marten with which they have a shared evolutionary history. In mammals, olfactory cues are used by prey species to avoid predators. To test whether anti-predator responses differ between the native red squirrel and the invasive grey squirrel, we exposed both species to scent cues of a shared native predator and quantified the responses of the two squirrel species. Red squirrels responded to pine marten scent by avoiding the feeder, increasing their vigilance and decreasing their feeding activity. By contrast, grey squirrels did not show any anti-predator behaviours in response to the scent of pine marten. Thus, differences in behavioural responses to a shared native predator may assist in explaining differing outcomes of species interactions between native and invasive prey species depending on the presence, abundance and exposure to native predators.

12.
Genome Biol Evol ; 12(1): 3656-3662, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31834364

RESUMEN

Hares (genus Lepus) provide clear examples of repeated and often massive introgressive hybridization and striking local adaptations. Genomic studies on this group have so far relied on comparisons to the European rabbit (Oryctolagus cuniculus) reference genome. Here, we report the first de novo draft reference genome for a hare species, the mountain hare (Lepus timidus), and evaluate the efficacy of whole-genome re-sequencing analyses using the new reference versus using the rabbit reference genome. The genome was assembled using the ALLPATHS-LG protocol with a combination of overlapping pair and mate-pair Illumina sequencing (77x coverage). The assembly contained 32,294 scaffolds with a total length of 2.7 Gb and a scaffold N50 of 3.4 Mb. Re-scaffolding based on the rabbit reference reduced the total number of scaffolds to 4,205 with a scaffold N50 of 194 Mb. A correspondence was found between 22 of these hare scaffolds and the rabbit chromosomes, based on gene content and direct alignment. We annotated 24,578 protein coding genes by combining ab-initio predictions, homology search, and transcriptome data, of which 683 were solely derived from hare-specific transcriptome data. The hare reference genome is therefore a new resource to discover and investigate hare-specific variation. Similar estimates of heterozygosity and inferred demographic history profiles were obtained when mapping hare whole-genome re-sequencing data to the new hare draft genome or to alternative references based on the rabbit genome. Our results validate previous reference-based strategies and suggest that the chromosome-scale hare draft genome should enable chromosome-wide analyses and genome scans on hares.


Asunto(s)
Genoma , Liebres/genética , Animales , Femenino , Genómica , Anotación de Secuencia Molecular , Transcriptoma
13.
J Anim Ecol ; 88(12): 1973-1985, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31411730

RESUMEN

Energy availability and energy use directly influence an organism's life history, fitness and ecological function. In wild animals, abiotic factors such as ambient temperature, season and rainfall, and biotic factors such as body mass, age, social group size and disease status, all potentially influence energy balance. Relatively few studies have examined the effects of disease on the energy expenditure of wild animals. Such studies could further our understanding of factors influencing the transmission of zoonotic diseases. The European badger (Meles meles) is a medium-sized carnivore that occurs in mixed-sex, familial groups across much of its range. In the UK, they are a protected species but are also involved in the epidemiology of bovine tuberculosis (TB) in cattle. We measured the daily energy expenditure (DEE) and resting metabolic rate (RMR) of wild badgers and related this to their TB infection status and a range of other interacting factors including season, group size, disease status, sex, age, body mass and body fat. Individuals were larger and fatter when they were older, and fatter during the winter. Males were also heavier than females during the summer. In addition, individuals from smaller groups that were exposed to TB tended to have lower body mass. There were no direct effects of disease status on DEE or RMR; however, there was a significant interaction whereby DEE increased with body mass in small groups but decreased with body mass in large groups. Results are consistent with the costs of TB infection being met by compensatory mechanisms enabling badgers to survive for extended periods without exhibiting measurable energetic consequences.


Asunto(s)
Mustelidae , Tuberculosis Bovina , Tuberculosis , Animales , Animales Salvajes , Bovinos , Femenino , Masculino , Estaciones del Año
14.
PeerJ ; 6: e5827, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30498626

RESUMEN

Endogenous circadian and seasonal activity patterns are adapted to facilitate effective utilisation of environmental resources. Activity patterns are shaped by physiological constraints, evolutionary history, circadian and seasonal changes and may be influenced by other factors, including ecological competition and interspecific interactions. Remote-sensing camera traps allow the collection of species presence data throughout the 24 h period and for almost indefinite lengths of time. Here, we collate data from 10 separate camera trap surveys in order to describe circadian and seasonal activity patterns of 10 mammal species, and, in particular, to evaluate interspecific (dis)associations of five predator-prey pairs. We recorded 8,761 independent detections throughout Northern Ireland. Badgers, foxes, pine martens and wood mice were nocturnal; European and Irish hares and European rabbits were crepuscular; fallow deer and grey and red squirrels were diurnal. All species exhibited significant seasonal variation in activity relative to the timing of sunrise/sunset. Foxes in particular were more crepuscular from spring to autumn and hares more diurnal. Lagged regression analyses of predator-prey activity patterns between foxes and prey (hares, rabbits and wood mice), and pine marten and prey (squirrel and wood mice) revealed significant annual and seasonal cross-correlations. We found synchronised activity patterns between foxes and hares, rabbits and wood mice and pine marten and wood mice, and asynchrony between squirrels and pine martens. Here, we provide fundamental ecological data on endemic, invasive, pest and commercially valuable species in Ireland, as well as those of conservation importance and those that could harbour diseases of economic and/or zoonotic relevance. Our data will be valuable in informing the development of appropriate species-specific methodologies and processes and associated policies.

15.
Mar Biol ; 165(10): 163, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30363846

RESUMEN

Spatially complex habitats provide refuge for prey and mediate many predator-prey interactions. Increasing anthropogenic pressures are eroding such habitats, reducing their complexity and potentially altering ecosystem stability on a global scale. Yet, we have only a rudimentary understanding of how structurally complex habitats create ecological refuges for most ecosystems. Better informed management decisions require an understanding of the mechanisms underpinning the provision of physical refuge and this may be linked to prey size, predator size and predator identity in priority habitats. We tested each of these factors empirically in a model biogenic reef system. Specifically, we tested whether mortality rates of blue mussels (Mytilus edulis) of different sizes differed among: (i) different forms of reef structural distribution (represented as 'clumped', 'patchy' and 'sparse'); (ii) predator species identity (shore crab, Carcinus maenas and starfish, Asterias rubens); and (iii) predator size. The survival rate of small mussels was greatest in the clumped experimental habitat and larger predators generally consumed more prey regardless of the structural organisation of treatment. Small mussels were protected from larger A. rubens but not from larger C. maenas in the clumped habitats. The distribution pattern of structural objects, therefore, may be considered a useful proxy for reef complexity when assessing predator-prey interactions, and optimal organisations should be considered based on both prey and predator sizes. These findings are essential to understand ecological processes underpinning predation rates in structurally complex habitats and to inform future restoration and ecological engineering practices.

16.
PeerJ ; 6: e5605, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294509

RESUMEN

The Gila robusta species complex in the Lower Colorado River Basin has a complicated taxonomic history. Recent authors have separated this group into three nominal taxa, G. robusta, G. intermedia, and G. nigra, however aside from location, no reliable method of distinguishing individuals of these species currently exists. To assess relationships within this group, we examined morphology of type specimens and fresh material, and used RADseq methods to assess phylogenetic relationship among these nominal species. Maximum likelihood and Bayesian inference tree building methods reveal high concordance between tree topologies based on the mitochondrial and nuclear datasets. Coalescent SNAPP analysis resolved a similar tree topology. Neither morphological nor molecular data reveal diagnostic differences between these species as currently defined. As such, G. intermedia and G. nigra should be considered synonyms of the senior G. robusta. We hypothesize that climate driven wet and dry cycles have led to periodic isolation of population subunits and subsequent local divergence followed by reestablished connectivity and mixing. Management plans should therefore focus on retaining genetic variability and viability of geographic populations to preserve adaptability to changing climate conditions.

17.
Ecol Evol ; 8(15): 7365-7377, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30151156

RESUMEN

Environmental change has reshuffled communities often causing taxonomic homogenization rather than differentiation. Some studies suggest that this increasing similarity of species composition between communities is accompanied by an increase in similarity of trait composition-functional homogenization-although different methodologies have failed to come to any consistent conclusions. Functional homogenization could have a large effect on ecosystem functioning and stability. Here, we use the general definition of homogenization as "reduced spatial turnover over time" to compare changes in Simpson's beta diversity (taxonomic turnover) with changes in Rao's quadratic entropy beta diversity (functional turnover) in British breeding birds at three spatial scales. Using biotic and climatic variables, we identify which factors may predispose a site to homogenization. The change in turnover measures between two time periods, 20 years apart, was calculated. A null model approach was taken to identify occurrences of functional homogenization and differentiation independent of changes in taxonomic turnover. We used conditional autoregressive models fitted using integrated nested Laplace approximations to determine how environmental drivers and factors relating to species distributions affect changes in spatial turnover of species and functional diversity. The measurement of functional homogenization affects the chance of rejection of the null models, with many sites showing taxonomic homogenization unaccompanied by functional homogenization, although occurrence varies with spatial scale. At the smallest scale, while temperature-related variables drive changes in taxonomic turnover, changes in functional turnover are associated with variation in growing degree days; however, changes in functional turnover become more difficult to predict at larger spatial scales. Our results highlight the multifactorial processes underlying taxonomic and functional homogenization and that redundancy in species traits may allow ecosystem functioning to be maintained in some areas despite changes in species composition.

18.
Sci Data ; 4: 170178, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206218

RESUMEN

We report the first mountain hare (Lepus timidus) transcriptome, produced by de novo assembly of RNA-sequencing reads. Data were obtained from eight specimens sampled in two localities, Alps and Ireland. The mountain hare tends to be replaced by the invading European hare (Lepus europaeus) in their numerous contact zones where the species hybridize, which affects their gene pool to a yet unquantified degree. We characterize and annotate the mountain hare transcriptome, detect polymorphism in the two analysed populations and use previously published data on the European hare (three specimens, representing the European lineage of the species) to identify 4 672 putative diagnostic sites between the species. A subset of 85 random independent SNPs was successfully validated using PCR and Sanger sequencing. These valuable genomic resources can be used to design tools to assess population status and monitor hybridization between species.


Asunto(s)
Liebres/genética , Transcriptoma , Animales , Hibridación Genética , Filogenia
19.
BMC Vet Res ; 13(1): 131, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28499434

RESUMEN

BACKGROUND: The European badger is an important wildlife reservoir of Mycobacterium bovis implicated in the spread of bovine tuberculosis in the United Kingdom and Ireland. Infected badgers are known to shed M. bovis in their urine and faeces, which may contaminate the environment. To aid bovine tuberculosis control efforts novel diagnostic tests for detecting infected and shedding badgers are needed. We proposed development of a novel, rapid immunochromatographic lateral flow device (LFD) as a non-invasive test to detect M. bovis cells in badger faeces. Its application in combination with immunomagnetic separation (IMS) to detect Mycobacterium bovis cells in badger faeces is reported here. RESULTS: A novel prototype LFD for M. bovis cells was successfully developed, with unique specificity for M. bovis and a limit of detection 50% (LOD50%) of 1.7 × 104 M. bovis cells/ml. When IMS was employed to selectively capture and concentrate M. bovis cells from badger faeces prior to LFD testing, the LOD50% of the IMS-LFD assay was 2.8 × 105 M. bovis cells/ml faecal homogenate. Faeces samples collected from latrines at badger setts in a region of endemic bovine tuberculosis infection were tested; 78 (18%) of 441 samples tested IMS-LFD assay positive, whereas 140 (32%) tested IMS-qPCR positive (Kappa agreement -0.009 ± 0.044, p = 0.838). Subsequently, when 130 faeces samples from live captured, or captive, badgers of known infection status (on the basis of StatPak, interferon-γ and/or culture results) were tested, the IMS-LFD assay had higher relative diagnostic specificity (Sp 0.926), but poorer relative diagnostic sensitivity (Se 0.081), than IMS-qPCR (Sp 0.706, Se 0.581) and IMS-culture (Sp 0.794, Se 0.436). CONCLUSIONS: The novel IMS-LFD assay, although very specific for M. bovis, has low analytical sensitivity (indicated by the LOD50%) and would only detect badgers shedding high numbers of M. bovis (>104-5 cells/g) in their faeces. The novel LFD would, therefore, have limited value as a non-invasive test for badger TB surveillance purposes but it may have value for alternative veterinary diagnostic applications.


Asunto(s)
Cromatografía de Afinidad/veterinaria , Heces/microbiología , Separación Inmunomagnética/veterinaria , Mustelidae/microbiología , Mycobacterium bovis/aislamiento & purificación , Animales , Anticuerpos Antibacterianos/análisis , Separación Inmunomagnética/métodos , Sensibilidad y Especificidad
20.
Sci Rep ; 6: 30947, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27492071

RESUMEN

Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...