Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
DNA Repair (Amst) ; 119: 103392, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36095926

RESUMEN

MutS initiates mismatch repair by recognizing mismatches in newly replicated DNA. Specific interactions between MutS and mismatches within double-stranded DNA promote ADP-ATP exchange and a conformational change into a sliding clamp. Here, we demonstrated that MutS from Pseudomonas aeruginosa associates with primed DNA replication intermediates. The predicted structure of this MutS-DNA complex revealed a new DNA binding site, in which Asn 279 and Arg 272 appeared to directly interact with the 3'-OH terminus of primed DNA. Mutation of these residues resulted in a noticeable defect in the interaction of MutS with primed DNA substrates. Remarkably, MutS interaction with a mismatch within primed DNA induced a compaction of the protein structure and impaired the formation of an ATP-bound sliding clamp. Our findings reveal a novel DNA binding mode, conformational change and intramolecular signaling for MutS recognition of mismatches within primed DNA structures.


Asunto(s)
Proteínas de Escherichia coli , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Disparidad de Par Base , ADN/metabolismo , Replicación del ADN , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Unión Proteica
2.
Appl Microbiol Biotechnol ; 106(3): 1185-1197, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35072736

RESUMEN

Chitinase chi18-5 is an enzyme able to hydrolyze chitin and chitosan producing chitooligosaccharides (COS) of potential technological interest. chi18-5 is produced naturally by the fungus Trichoderma atroviride. It belongs to the glycosyl hydrolase (GH) family 18 of the Carbohydrate Active Enzyme (CAZy) database and it has 83% identity compared to the well-characterized chi42 of Trichoderma harzianum. Several efforts have been made to characterize the biochemical activity of the enzyme and its structure. Here, we studied the biophysical properties of recombinant chi18-5. In order to gain insight into its structure and stability, we studied thermal denaturation by Circular Dichroism (CD), Intrinsic Fluorescence (FL), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR) at several pH between 3 and 8. We observed that the conformation of chi18-5 changes near its pI, and the transitions as a function of the temperature involved an increment in ß-sheet secondary structure at the expenses of ⍺-helix. We also performed amide hydrogen exchange dynamics in selected conditions. At pH ≤ 6, the proportion of fast exchanging residues are larger than at pH ≥ 6. Our results suggest that at pH below pI, chi18-5 is in a less compact structure which may have influence in the interaction with substrate and enzyme activity. KEY POINTS: • Characterization of enzyme behavior is critical for their wide applications • We produced and characterized biophysically a chitinase as a function of pH • The pH of optimum activity correlates with a less compact structure of chi18-5.


Asunto(s)
Quitinasas , Quitina , Quitinasas/genética , Quitinasas/metabolismo , Concentración de Iones de Hidrógeno , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
3.
Mater Sci Eng C Mater Biol Appl ; 119: 111398, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321575

RESUMEN

The aim of this study was to design and develop a novel hybrid formulation based on lipid nanocapsules containing bevacizumab (BVZ), an effective therapeutic antibody, on the surface and triamcinolone acetonide (TA) in the inner core (BVZ-TA-LNC) intended to improve ocular therapy. Hence, a phase inversion-insertion one step method was developed to drug loading and surface modification of lipid nanocapsules by post-insertion of a bifunctional polymer, followed by antibody coupling using "click" chemistry. The covalent bond and antibody capacity binding to its specific antigen were confirmed by thermal analysis and immunoassay, respectively. BVZ-TA-LNC presented nanometric size (102 nm), negative surface potential (-19 mV) and exhibiting 56% of TA in the lipid core. BVZ-TA-LNC tended to prevent the endothelial cell migration and significantly prevented the capillary formation induced by the vascular endothelium growth factor (VEGF). The novel hybrid system allowed the co-loading of two different therapeutic molecules and may be promising to improve the therapy of eye disorders that occur with inflammation and/or neovascularization.


Asunto(s)
Nanocápsulas , Triamcinolona Acetonida , Anticuerpos Monoclonales , Bevacizumab/uso terapéutico , Lípidos
4.
J Biomol Struct Dyn ; 23(2): 135-42, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16060687

RESUMEN

The treatment of electrostatic interactions in molecular simulations is of fundamental importance. Ewald and related methods are being increasingly used to the detriment of cutoff schemes, which are known to produce several artifacts. A potential drawback of the Ewald method is the spatial periodicity that is imposed to the system, which could produce artifacts when applied in the simulation of liquids. In this work we analyze the octaalanine peptide with charged termini in explicit solvent, for which severe effects due to the use of Ewald sums were predicted using continuum electrostatics. Molecular Dynamics simulations for a total of 158 nanoseconds were performed in cells of different sizes. From the comparison of the results of different system sizes, no significant periodicity-induced artifacts were observed. It is argued that in current biomolecular simulations, the incomplete sampling is likely to affect the results to a larger extent than the artifacts induced by the use of Ewald sums.


Asunto(s)
Alanina/química , Simulación por Computador , Fragmentos de Péptidos/química , Conformación Proteica , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...