RESUMEN
The ultimate miniaturization of any optical system relies on the reduction or removal of free-space gaps between optical elements. Recently, nonlocal flat optic components named "spaceplates" were introduced to effectively compress space for light propagation. However, space compression over the visible spectrum remains beyond the reach of current spaceplate designs due to their inherently limited operating bandwidth and functional inefficiencies in the visible range. Here, we introduce "multi-color" spaceplates performing achromatic space compression at three distinct color channels across the visible spectrum to markedly miniaturize color imaging systems. In this approach, we first design monochromatic spaceplates with high compression factors and high transmission amplitudes at visible wavelengths based on a scalable structure and dielectric materials widely used in the fabrication of meta-optical components. We then show that the dispersion-engineered combination of monochromatic spaceplates with suitably designed transmission responses forms multicolor spaceplates that function achromatically. The proposed multicolor spaceplates, composed of amorphous titanium dioxide and silicon dioxide layers, efficiently replace free-space volumes with compression ratios as high as 4.6, beyond what would be achievable by a continuously broadband spaceplate made of the same materials. Our strategy for designing monochromatic and multicolor spaceplates, along with the presented theoretical and computational results, show that strong space-compression effects can be achieved in the visible range. Our findings may ultimately enable a new generation of ultrathin optical devices for various applications.
RESUMEN
Semiconducting transition metal dichalcogenides (TMDs) have gained significant attention as a gain medium for nanolasers, owing to their unique ability to be easily placed and stacked on virtually any substrate. However, the atomically thin nature of the active material in existing TMD lasers and the limited size due to mechanical exfoliation presents a challenge, as their limited output power makes it difficult to distinguish between true laser operation and other "laser-like" phenomena. Here, we present room temperature lasing from a large-area tungsten disulfide (WS2) monolayer, grown by a wafer-scale chemical vapor deposition (CVD) technique. The monolayer is placed on a dual-resonance dielectric metasurface with a rectangular lattice designed to enhance both absorption and emission, resulting in an ultralow threshold operation (threshold well below 1 W/cm2). We provide a thorough study of the laser performance, paying special attention to directionality, output power, and spatial coherence. Notably, our lasers demonstrated a coherence length of over 30 µm, which is several times greater than what has been reported for 2D material lasers so far. Our realization of a single-mode laser from a CVD-grown monolayer presents exciting opportunities for integration and the development of real-world applications.
RESUMEN
Scattering theory is the basis of all linear optical and photonic devices, whose spectral response underpins wide-ranging applications from sensing to energy conversion. Unlike the Shannon theory for communication channels, or the Fano theory for electric circuits, understanding the limits of spectral wave scattering remains a notoriously challenging open problem. We introduce a mathematical scattering representation that inherently embeds fundamental principles of causality and passivity into its elemental degrees of freedom. We use this representation to reveal strong constraints in the mathematical structure of scattered fields, and to develop a general theory of the maximum radiative heat transfer in the near field, resolving a long-standing open question. Our approach can be seamlessly applied to high-interest applications across nanophotonics, and appears extensible to general classical and quantum scattering theory.
RESUMEN
A general formulation for controlling the external scattering coefficients of cylindrical harmonics is presented, generalizing previous results for cloaking of a bare dielectric particle. By inserting a suitable surface admittance at the boundary between a dielectric body and the background region, cylindrical harmonic waves can be enhanced by tailoring the admittance value. Two separate limiting cases for super-scattering features are presented and compared against the same bare particle reference case, providing insights on how to enhance the multi-harmonic scattering pattern. Using this formulation, super-scattering systems can be created, which are suitable for future implementation using active or passive thin metasurfaces.
RESUMEN
Function determines the minimum thickness of an optical system.
RESUMEN
The field of quantum materials has experienced rapid growth over the past decade, driven by exciting new discoveries with immense transformative potential. Traditional synthetic methods to quantum materials have, however, limited the exploration of architectural control beyond the atomic scale. By contrast, soft matter self-assembly can be used to tailor material structure over a large range of length scales, with a vast array of possible form factors, promising emerging quantum material properties at the mesoscale. This review explores opportunities for soft matter science to impact the synthesis of quantum materials with advanced properties. Existing work at the interface of these two fields is highlighted, and perspectives are provided on possible future directions by discussing the potential benefits and challenges which can arise from their bridging.
RESUMEN
Increasing the refractive index available for optical and nanophotonic systems opens new vistas for design, for applications ranging from broadband metalenses to ultrathin photovoltaics to high-quality-factor resonators. In this work, fundamental limits to the refractive index of any material are derived, given only the underlying electron density and either the maximum allowable dispersion or the minimum bandwidth of interest. In the realm of small to modest dispersion, the bounds are closely approached and not surpassed by a wide range of natural materials, showing that nature has already nearly reached a Pareto frontier for refractive index and dispersion. Conversely, for narrow-bandwidth applications, nature does not provide the highly dispersive, high-index materials that the bounds suggest should be possible. The theory of composites to identify metal-based metamaterials that can exhibit small losses and sizeable increases in refractive index over the current best materials is used. Moreover, if the "elusive lossless metal" can be synthesized, it is shown that it would enable arbitrarily high refractive index in the high-dispersion regime, nearly achieving the bounds even at refractive indices of 100 and beyond at optical frequencies.
RESUMEN
In this Letter, we discuss two general classes of apparent violations of the bulk-edge correspondence principle for continuous topological photonic materials, associated with the asymptotic behavior of the surface modes for diverging wave numbers. Considering a nonreciprocal plasma as a model system, we show that the inclusion of spatial dispersion (e.g., hydrodynamic nonlocality) formally restores the bulk-edge correspondence by avoiding an unphysical response at large wave numbers. Most importantly, however, our findings show that, for the considered cases, the correspondence principle is physically violated for all practical purposes, as a result of the unavoidable attenuation of highly confined modes even if all materials are assumed perfect, with zero intrinsic bulk losses, due to confinement-induced Landau damping or nonlocality-induced radiation leakage. Our work helps clarifying the subtle and rich topological wave physics of continuous media.
RESUMEN
Electromagnetic waves propagating in conventional wave-guiding structures are reflected by discontinuities and decay in lossy regions. In this Letter, we drastically modify this typical guided-wave behavior by combining concepts from non-Hermitian physics and topological photonics. To this aim, we theoretically study, for the first time, the possibility of realizing an exceptional point between coupled topological modes in a non-Hermitian nonreciprocal waveguide. Our proposed system is composed of oppositely biased gyrotropic materials (e.g., biased plasmas or graphene layers) with a balanced distribution of loss and gain. To study this complex wave-guiding problem, we put forward an exact analysis based on classical Green's function theory, and we elucidate the behavior of coupled topological modes and the nature of their non-Hermitian degeneracies. We find that, by operating near an exceptional point, we can realize anomalous topological wave propagation with, at the same time, low group velocity, inherent immunity to backscattering at discontinuities, and immunity to losses. These theoretical findings may open exciting research directions and stimulate further investigations of non-Hermitian topological waveguides to realize robust wave propagation in practical scenarios.
RESUMEN
We investigate topologically-protected unidirectional leaky waves on magnetized plasmonic structures acting as homogeneous photonic topological insulators. Our theoretical analyses and numerical experiments aim at unveiling the general properties of these exotic surface waves, and their nonreciprocal and topological nature. In particular, we study the behavior of topological leaky modes in stratified structures composed of a magnetized plasma at the interface with isotropic conventional media, and we show how to engineer their propagation and radiation properties, leading to topologically-protected backscattering-immune wave propagation, and highly directive and tunable radiation. Taking advantage of the non-trivial topological properties of these leaky modes, we also theoretically demonstrate advanced functionalities, including arbitrary re-routing of leaky waves on the surface of bodies with complex shapes, as well as the realization of topological leaky-wave (nano)antennas with isolated channels of radiation that are completely independent and separately tunable. Our findings help shedding light on the behavior of topologically-protected modes in open wave-guiding structures, and may open intriguing directions for future antenna generations based on topological structures, at microwaves and optical frequencies.
RESUMEN
The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.
RESUMEN
Metasurfaces enable a new paradigm to control electromagnetic waves by manipulating subwavelength artificial structures within just a fraction of wavelength. Despite the rapid growth, simultaneously achieving low-dimensionality, high transmission efficiency, real-time continuous reconfigurability, and a wide variety of reprogrammable functions is still very challenging, forcing researchers to realize just one or few of the aforementioned features in one design. This study reports a subwavelength reconfigurable Huygens' metasurface realized by loading it with controllable active elements. The proposed design provides a unified solution to the aforementioned challenges of real-time local reconfigurability of efficient Huygens' metasurfaces. As one exemplary demonstration, a reconfigurable metalens at the microwave frequencies is experimentally realized, which, to the best of the knowledge, demonstrates for the first time that multiple and complex focal spots can be controlled simultaneously at distinct spatial positions and reprogrammable in any desired fashion, with fast response time and high efficiency. The presented active Huygens' metalens may offer unprecedented potentials for real-time, fast, and sophisticated electromagnetic wave manipulation such as dynamic holography, focusing, beam shaping/steering, imaging, and active emission control.
RESUMEN
Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.'s study), although the metal's ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell's law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process.
Asunto(s)
Nanotecnología/métodos , Resonancia por Plasmón de Superficie/métodos , Diseño de Equipo/métodos , LuzRESUMEN
Novel ultrathin dual-functional metalenses are proposed, fabricated, tested, and verified in the microwave regime for the first time. The significance is that their anomalous transmission efficiency almost reaches the theoretical limit of 25%, showing a remarkable improvement compared with earlier ultrathin metasurface designs with less than 5% coupling efficiency. The planar metalens proposed empowers significant reduction in thickness, versatile focusing behavior, and high transmission efficiency simultaneously.
RESUMEN
A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic 'lumped' circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.
RESUMEN
We introduce the concept of metamaterial analog computing, based on suitably designed metamaterial blocks that can perform mathematical operations (such as spatial differentiation, integration, or convolution) on the profile of an impinging wave as it propagates through these blocks. Two approaches are presented to achieve such functionality: (i) subwavelength structured metascreens combined with graded-index waveguides and (ii) multilayered slabs designed to achieve a desired spatial Green's function. Both techniques offer the possibility of miniaturized, potentially integrable, wave-based computing systems that are thinner than conventional lens-based optical signal and data processors by several orders of magnitude.
RESUMEN
The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices.
Asunto(s)
Modelos Teóricos , Nanopartículas/química , Nanopartículas/ultraestructura , Dinámicas no Lineales , Refractometría/instrumentación , Refractometría/métodos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Nanopartículas/efectos de la radiación , Dispersión de RadiaciónRESUMEN
The lack of symmetry between electric and magnetic charges, a fundamental consequence of the small value of the fine-structure constant, is directly related to the weakness of magnetic effects in optical materials. Properly tailored plasmonic nanoclusters have been proposed recently to induce artificial optical magnetism based on the principle that magnetic effects are indistinguishable from specific forms of spatial dispersion of permittivity at optical frequencies. In a different context, plasmonic Fano resonances have generated a great deal of interest, particularly for use in sensing applications that benefit from sharp spectral features and extreme field localization. In the absence of natural magnetism, optical Fano resonances have so far been based on purely electric effects. In this Letter, we demonstrate that a subwavelength plasmonic metamolecule consisting of four closely spaced gold nanoparticles supports a strong magnetic response coupled to a broad electric resonance. Small structural asymmetries in the assembled nanoring enable the interaction between electric and magnetic modes, leading to the first observation of a magnetic-based Fano scattering resonance at optical frequencies. Our findings are supported by excellent agreement with simulations and analytical calculations, and represent an important step towards the quest for artificial magnetism and negative refractive index metamaterials at optical frequencies.