Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
3.
PLoS One ; 16(5): e0245031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34010280

RESUMEN

SARS-CoV-2 infection causing the novel coronavirus disease 2019 (COVID-19) has been responsible for more than 2.8 million deaths and nearly 125 million infections worldwide as of March 2021. In March 2020, the World Health Organization determined that the COVID-19 outbreak is a global pandemic. The urgency and magnitude of this pandemic demanded immediate action and coordination between local, regional, national, and international actors. In that mission, researchers require access to high-quality biological materials and data from SARS-CoV-2 infected and uninfected patients, covering the spectrum of disease manifestations. The "Biobanque québécoise de la COVID-19" (BQC19) is a pan-provincial initiative undertaken in Québec, Canada to enable the collection, storage and sharing of samples and data related to the COVID-19 crisis. As a disease-oriented biobank based on high-quality biosamples and clinical data of hospitalized and non-hospitalized SARS-CoV-2 PCR positive and negative individuals. The BQC19 follows a legal and ethical management framework approved by local health authorities. The biosamples include plasma, serum, peripheral blood mononuclear cells and DNA and RNA isolated from whole blood. In addition to the clinical variables, BQC19 will provide in-depth analytical data derived from the biosamples including whole genome and transcriptome sequencing, proteome and metabolome analyses, multiplex measurements of key circulating markers as well as anti-SARS-CoV-2 antibody responses. BQC19 will provide the scientific and medical communities access to data and samples to better understand, manage and ultimately limit, the impact of COVID-19. In this paper we present BQC19, describe the process according to which it is governed and organized, and address opportunities for future research collaborations. BQC19 aims to be a part of a global communal effort addressing the challenges of COVID-19.


Asunto(s)
Bancos de Muestras Biológicas/organización & administración , COVID-19/patología , COVID-19/epidemiología , COVID-19/genética , COVID-19/metabolismo , Humanos , Difusión de la Información/métodos , Pandemias , Quebec/epidemiología , SARS-CoV-2/aislamiento & purificación
4.
J Pathol ; 249(3): 319-331, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31236944

RESUMEN

Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Osteosarcoma/genética , Osteosarcoma/secundario , Secuenciación Completa del Genoma , Factores de Edad , Colombia Británica , Variaciones en el Número de Copia de ADN , Femenino , Amplificación de Genes , Dosificación de Gen , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Inestabilidad de Microsatélites , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Transcriptoma , Estados Unidos , Secuenciación del Exoma
6.
Nat Commun ; 10(1): 1262, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890717

RESUMEN

Lys-27-Met mutations in histone 3 genes (H3K27M) characterize a subgroup of deadly gliomas and decrease genome-wide H3K27 trimethylation. Here we use primary H3K27M tumor lines and isogenic CRISPR-edited controls to assess H3K27M effects in vitro and in vivo. We find that whereas H3K27me3 and H3K27me2 are normally deposited by PRC2 across broad regions, their deposition is severely reduced in H3.3K27M cells. H3K27me3 is unable to spread from large unmethylated CpG islands, while H3K27me2 can be deposited outside these PRC2 high-affinity sites but to levels corresponding to H3K27me3 deposition in wild-type cells. Our findings indicate that PRC2 recruitment and propagation on chromatin are seemingly unaffected by K27M, which mostly impairs spread of the repressive marks it catalyzes, especially H3K27me3. Genome-wide loss of H3K27me3 and me2 deposition has limited transcriptomic consequences, preferentially affecting lowly-expressed genes regulating neurogenesis. Removal of H3K27M restores H3K27me2/me3 spread, impairs cell proliferation, and completely abolishes their capacity to form tumors in mice.


Asunto(s)
Neoplasias Encefálicas/genética , Cromatina/metabolismo , Glioblastoma/genética , Histonas/genética , Complejo Represivo Polycomb 2/metabolismo , Adolescente , Anciano , Animales , Neoplasias Encefálicas/patología , Sistemas CRISPR-Cas , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Niño , Islas de CpG/genética , Metilación de ADN/genética , Epigénesis Genética , Femenino , Edición Génica/métodos , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Células HEK293 , Código de Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Masculino , Metionina/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación , Neurogénesis/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nat Commun ; 9(1): 554, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396438

RESUMEN

The original version of this Article contained an error in the title, which was incorrectly given as 'APRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients'. This has now been corrected in both the PDF and HTML versions of the Article to read 'A PRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients'.

8.
Nat Commun ; 9(1): 67, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302025

RESUMEN

To date, epimutations reported in man have been somatic and erased in germlines. Here, we identify a cause of the autosomal recessive cblC class of inborn errors of vitamin B12 metabolism that we name "epi-cblC". The subjects are compound heterozygotes for a genetic mutation and for a promoter epimutation, detected in blood, fibroblasts, and sperm, at the MMACHC locus; 5-azacytidine restores the expression of MMACHC in fibroblasts. MMACHC is flanked by CCDC163P and PRDX1, which are in the opposite orientation. The epimutation is present in three generations and results from PRDX1 mutations that force antisense transcription of MMACHC thereby possibly generating a H3K36me3 mark. The silencing of PRDX1 transcription leads to partial hypomethylation of the epiallele and restores the expression of MMACHC. This example of epi-cblC demonstrates the need to search for compound epigenetic-genetic heterozygosity in patients with typical disease manifestation and genetic heterozygosity in disease-causing genes located in other gene trios.


Asunto(s)
Proteínas Portadoras/genética , Epistasis Genética , Errores Innatos del Metabolismo/genética , Mutación , Peroxirredoxinas/genética , Vitamina B 12/metabolismo , Alelos , Azacitidina/farmacología , Secuencia de Bases , Inhibidores Enzimáticos/farmacología , Salud de la Familia , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Heterocigoto , Humanos , Masculino , Errores Innatos del Metabolismo/metabolismo , Oxidorreductasas , Linaje , Secuenciación Completa del Genoma
9.
Sci Rep ; 7(1): 11496, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28904337

RESUMEN

One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.

10.
BMC Med Genomics ; 9(1): 59, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27624058

RESUMEN

BACKGROUND: The observation that the genetic variants identified in genome-wide association studies (GWAS) frequently lie in non-coding regions of the genome that contain cis-regulatory elements suggests that altered gene expression underlies the development of many complex traits. In order to efficiently make a comprehensive assessment of the impact of non-coding genetic variation in immune related diseases we emulated the whole-exome sequencing paradigm and developed a custom capture panel for the known DNase I hypersensitive site (DHS) in immune cells - "Immunoseq". RESULTS: We performed Immunoseq in 30 healthy individuals where we had existing transcriptome data from T cells. We identified a large number of novel non-coding variants in these samples. Relying on allele specific expression measurements, we also showed that our selected capture regions are enriched for functional variants that have an impact on differential allelic gene expression. The results from a replication set with 180 samples confirmed our observations. CONCLUSIONS: We show that Immunoseq is a powerful approach to detect novel rare variants in regulatory regions. We also demonstrate that these novel variants have a potential functional role in immune cells.


Asunto(s)
Alelos , Análisis Mutacional de ADN , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Linfocitos T/inmunología , Estudio de Asociación del Genoma Completo , Humanos , Anotación de Secuencia Molecular , Sitios de Carácter Cuantitativo/genética , Linfocitos T/metabolismo
11.
Methods Mol Biol ; 1458: 311-37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27581031

RESUMEN

The transcriptome is composed of different types of RNA molecules including mRNAs, tRNAs, rRNAs, and other noncoding RNAs that are found inside a cell at a given time. Analyzing transcriptome patterns can shed light on the functional state of the cell as well as on the dynamics of cellular behavior associated with genomic and environmental changes. Likewise, transcriptome analysis has been a major help in solving biological issues and understanding the molecular basis of many diseases including human cancers. Specifically, since targeted and whole genome sequencing studies are becoming more common in identifying the driving factors of cancer, a comprehensive and high-resolution analysis of the transcriptome, as provided by RNA-Sequencing (RNA-Seq), plays a key role in investigating the functional relevance of the identified genomic aberrations. Here, we describe experimental procedures of RNA-Seq and downstream data processing and analysis, with a focus on the identification of abnormally expressed transcripts and genes.


Asunto(s)
Neoplasias/genética , Neoplasias/patología , Microambiente Tumoral/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Control de Calidad , Transcriptoma
12.
Eur J Hum Genet ; 24(5): 710-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26242991

RESUMEN

Causative variants in APP, PSEN1 or PSEN2 account for a majority of cases of autosomal dominant early-onset Alzheimer disease (ADEOAD, onset before 65 years). Variant detection rates in other EOAD patients, that is, with family history of late-onset AD (LOAD) (and no incidence of EOAD) and sporadic cases might be much lower. We analyzed the genomes from 264 patients using whole-exome sequencing (WES) with high depth of coverage: 90 EOAD patients with family history of LOAD and no incidence of EOAD in the family and 174 patients with sporadic AD starting between 51 and 65 years. We found three PSEN1 and one PSEN2 causative, probably or possibly causative variants in four patients (1.5%). Given the absence of PSEN1, PSEN2 and APP causative variants, we investigated whether these 260 patients might be burdened with protein-modifying variants in 20 genes that were previously shown to cause other types of dementia when mutated. For this analysis, we included an additional set of 160 patients who were previously shown to be free of causative variants in PSEN1, PSEN2 and APP: 107 ADEOAD patients and 53 sporadic EOAD patients with an age of onset before 51 years. In these 420 patients, we detected no variant that might modify the function of the 20 dementia-causing genes. We conclude that EOAD patients with family history of LOAD and no incidence of EOAD in the family or patients with sporadic AD starting between 51 and 65 years have a low variant-detection rate in AD genes.


Asunto(s)
Enfermedad de Alzheimer/genética , Exoma , Pruebas Genéticas/métodos , Precursor de Proteína beta-Amiloide/genética , Estudios de Casos y Controles , Femenino , Pruebas Genéticas/normas , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Presenilina-1/genética , Presenilina-2/genética , Procesamiento Proteico-Postraduccional/genética
13.
Oncotarget ; 6(31): 31844-56, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26378811

RESUMEN

Pilocytic astrocytoma (PA) is the most common brain tumor in children but is rare in adults, and hence poorly studied in this age group. We investigated 222 PA and report increased aneuploidy in older patients. Aneuploid genomes were identified in 45% of adult compared with 17% of pediatric PA. Gains were non-random, favoring chromosomes 5, 7, 6 and 11 in order of frequency, and preferentially affecting non-cerebellar PA and tumors with BRAF V600E mutations and not with KIAA1549-BRAF fusions or FGFR1 mutations. Aneuploid PA differentially expressed genes involved in CNS development, the unfolded protein response, and regulators of genomic stability and the cell cycle (MDM2, PLK2),whose correlated programs were overexpressed specifically in aneuploid PA compared to other glial tumors. Thus, convergence of pathways affecting the cell cycle and genomic stability may favor aneuploidy in PA, possibly representing an additional molecular driver in older patients with this brain tumor.


Asunto(s)
Aneuploidia , Astrocitoma/clasificación , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/clasificación , Adulto , Factores de Edad , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Niño , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Mutación/genética , Estadificación de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
14.
BMC Genomics ; 15: 415, 2014 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-24885784

RESUMEN

BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate intracellular pathogen that infects many ruminant species. The acquisition of foreign genes via horizontal gene transfer has been postulated to contribute to its pathogenesis, as these genetic elements are absent from its putative ancestor, M. avium subsp. hominissuis (MAH), an environmental organism with lesser pathogenicity. In this study, high-throughput sequencing of MAP transposon libraries were analyzed to qualitatively and quantitatively determine the contribution of individual genes to bacterial survival during infection. RESULTS: Out of 52384 TA dinucleotides present in the MAP K-10 genome, 12607 had a MycoMarT7 transposon in the input pool, interrupting 2443 of the 4350 genes in the MAP genome (56%). Of 96 genes situated in MAP-specific genomic islands, 82 were disrupted in the input pool, indicating that MAP-specific genomic regions are dispensable for in vitro growth (odds ratio = 0.21). Following 5 independent in vivo infections with this pool of mutants, the correlation between output pools was high for 4 of 5 (R = 0.49 to 0.61) enabling us to define genes whose disruption reproducibly reduced bacterial fitness in vivo. At three different thresholds for reduced fitness in vivo, MAP-specific genes were over-represented in the list of predicted essential genes. We also identified additional genes that were severely depleted after infection, and several of them have orthologues that are essential genes in M. tuberculosis. CONCLUSIONS: This work indicates that the genetic elements required for the in vivo survival of MAP represent a combination of conserved mycobacterial virulence genes and MAP-specific genes acquired via horizontal gene transfer. In addition, the in vitro and in vivo essential genes identified in this study may be further characterized to offer a better understanding of MAP pathogenesis, and potentially contribute to the discovery of novel therapeutic and vaccine targets.


Asunto(s)
Proteínas Bacterianas/genética , Elementos Transponibles de ADN , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculosis/microbiología , Animales , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Transferencia de Gen Horizontal , Genes Esenciales , Aptitud Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Endogámicos C57BL , Mycobacterium avium subsp. paratuberculosis/fisiología , Filogenia , Análisis de Secuencia de ADN
15.
Infect Immun ; 82(7): 2670-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24686056

RESUMEN

ALOX12 is a gene encoding arachidonate 12-lipoxygenase (12-LOX), a member of a nonheme lipoxygenase family of dioxygenases. ALOX12 catalyzes the addition of oxygen to arachidonic acid, producing 12-hydroperoxyeicosatetraenoic acid (12-HPETE), which can be reduced to the eicosanoid 12-HETE (12-hydroxyeicosatetraenoic acid). 12-HETE acts in diverse cellular processes, including catecholamine synthesis, vasoconstriction, neuronal function, and inflammation. Consistent with effects on these fundamental mechanisms, allelic variants of ALOX12 are associated with diseases including schizophrenia, atherosclerosis, and cancers, but the mechanisms have not been defined. Toxoplasma gondii is an apicomplexan parasite that causes morbidity and mortality and stimulates an innate and adaptive immune inflammatory reaction. Recently, it has been shown that a gene region known as Toxo1 is critical for susceptibility or resistance to T. gondii infection in rats. An orthologous gene region with ALOX12 centromeric is also present in humans. Here we report that the human ALOX12 gene has susceptibility alleles for human congenital toxoplasmosis (rs6502997 [P, <0.000309], rs312462 [P, <0.028499], rs6502998 [P, <0.029794], and rs434473 [P, <0.038516]). A human monocytic cell line was genetically engineered using lentivirus RNA interference to knock down ALOX12. In ALOX12 knockdown cells, ALOX12 RNA expression decreased and levels of the ALOX12 substrate, arachidonic acid, increased. ALOX12 knockdown attenuated the progression of T. gondii infection and resulted in greater parasite burdens but decreased consequent late cell death of the human monocytic cell line. These findings suggest that ALOX12 influences host responses to T. gondii infection in human cells. ALOX12 has been shown in other studies to be important in numerous diseases. Here we demonstrate the critical role ALOX12 plays in T. gondii infection in humans.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Toxoplasmosis Congénita/genética , Alelos , Araquidonato 12-Lipooxigenasa/química , Araquidonato 12-Lipooxigenasa/genética , Ácido Araquidónico/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Línea Celular , Estudios de Cohortes , Citocinas/genética , Citocinas/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Variación Genética , Humanos , Masculino , Monocitos/metabolismo , Monocitos/parasitología , Plásmidos/genética , Interferencia de ARN , ARN Interferente Pequeño , Toxoplasmosis Congénita/inmunología , Toxoplasmosis Congénita/parasitología
16.
Nat Genet ; 46(5): 451-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705254

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene ACVR1 in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer.


Asunto(s)
Receptores de Activinas Tipo I/genética , Neoplasias del Tronco Encefálico/genética , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Glioma/genética , Animales , Neoplasias del Tronco Encefálico/clasificación , Niño , Variaciones en el Número de Copia de ADN , Metilación de ADN , Perfilación de la Expresión Génica , Glioma/clasificación , Humanos , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Fosforilación , Análisis de Secuencia de ADN , Proteínas Smad/metabolismo , Pez Cebra
17.
Diabetologia ; 57(4): 738-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24362726

RESUMEN

AIMS/HYPOTHESIS: Dyslipidaemia, a common feature of type 2 diabetes, is characterised by an increase in atherogenic particles, quantifiable through apolipoprotein B (ApoB) levels. Genetic studies of lipid levels have focused on Europeans; a study in South Asians could identify novel genes. METHODS: We tested 31,739 single nucleotide polymorphisms (SNPs) from ∼ 2,000 genes in 2,573 South Asians from the epidemiological arm of the Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication (DREAM) study (EpiDREAM) for association with ApoB and we tested two novel associations for replication in 1,181 South Asians from the INTERHEART case-control study. RESULTS: The SNP, rs4664443, within DPP4 was associated with ApoB (p = 7.98 × 10(-5)) in EpiDREAM. The observed association was replicated in the INTERHEART South Asians (one-sided p = 9.65 × 10(-3); combined two-sided p = 4.68 × 10(-6)). The rs4664443 SNP was not associated with ApoB among five other EpiDREAM ethnicities. However, because South Asians had a significantly lower mean BMI compared with other EpiDREAM ethnicities, we tested for and found an interaction between rs4664443 and BMI for ApoB among the Europeans, the largest subgroup in EpiDREAM (p = 4.14 × 10(-3) for interaction), observing an association with ApoB in Europeans with a BMI <25 kg/m(2) (p = 2.35 × 10(-3)), but not with a BMI ≥ 25 kg/m(2) (p = 0.21). The association between rs4664443 and ApoB among all EpiDREAM individuals with BMI <25 kg/m(2) was significant (n = 2,972; p = 1.44 × 10(-5)) compared with those with a BMI ≥ 25 kg/m(2) (n = 11,559; p = 0.81), and there was evidence of association among all genotyped individuals with a BMI <25 kg/m(2), including the INTERHEART South Asians (n = 3,601; p = 9.52 × 10(-7)). CONCLUSION/INTERPRETATION: Variation at the DPP4 locus is associated with ApoB in South Asians and displays heterogeneity related to BMI in other ethnicities.


Asunto(s)
Apolipoproteínas B/sangre , Índice de Masa Corporal , Dipeptidil Peptidasa 4/genética , Adulto , Pueblo Asiatico , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Población Blanca
18.
Nat Genet ; 46(1): 39-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24316981

RESUMEN

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


Asunto(s)
Neoplasias Encefálicas/genética , Cromosomas Humanos Par 19 , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Neoplasias de Células Germinales y Embrionarias/genética , Preescolar , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Fusión Génica , Humanos , Masculino , Isoformas de Proteínas , Proteína p130 Similar a la del Retinoblastoma/genética , Ensayos Antitumor por Modelo de Xenoinjerto , ADN Metiltransferasa 3B
19.
J Med Genet ; 51(1): 28-34, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24123875

RESUMEN

The identification of somatic driver mutations in cancer has enabled therapeutic advances by identifying drug targets critical to disease causation. However, such genomic discoveries in oncology have not translated into advances for non-cancerous disease since point mutations in a single cell would be unlikely to cause non-malignant disease. An exception to this would occur if the mutation happened early enough in development to be present in a large percentage of a tissue's cellular population. We sought to identify the existence of somatic mutations occurring early in human development by ascertaining base-pair mutations present in one of a pair of monozygotic twins, but absent from the other and assessing evidence for mosaicism. To do so, we genome-wide genotyped 66 apparently healthy monozygotic adult twins at 506 786 high-quality single nucleotide polymorphisms (SNPs) in white blood cells. Discrepant SNPs were verified by Sanger sequencing and a selected subset was tested for mosaicism by targeted high-depth next-generation sequencing (20 000-fold coverage) as a surrogate marker of timing of the mutation. Two de novo somatic mutations were unequivocally confirmed to be present in white blood cells, resulting in a frequency of 1.2×10(-7) mutations per nucleotide. There was little evidence of mosaicism on high-depth next-generation sequencing, suggesting that these mutations occurred early in embryonic development. These findings provide direct evidence that early somatic point mutations do occur and can lead to differences in genomes between otherwise identical twins, suggesting a considerable burden of somatic mutations among the trillions of mitoses that occur over the human lifespan.


Asunto(s)
Mutación Puntual , Gemelos Monocigóticos/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Tasa de Mutación , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
20.
FASEB J ; 28(1): 117-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24121462

RESUMEN

The purpose of this study was the generation of central nervous system (CNS)-excluded cannabinoid receptor agonists to test the hypothesis that inhibition of spasticity, due to CNS autoimmunity, could be controlled by affecting neurotransmission within the periphery. Procedures included identification of chemicals and modeling to predict the mode of exclusion; induction and control of spasticity in the ABH mouse model of multiple sclerosis; conditional deletion of CB1 receptor in peripheral nerves; side-effect profiling to demonstrate the mechanism of CNS-exclusion via drug pumps; genome-wide association study in N2(129×ABH) backcross to map polymorphic cannabinoid drug pump; and sequencing and detection of cannabinoid drug-pump activity in human brain endothelial cell lines. Three drugs (CT3, SAB378 and SAD448) were identified that control spasticity via action on the peripheral nerve CB1 receptor. These were peripherally restricted via drug pumps that limit the CNS side effects (hypothermia) of cannabinoids to increase the therapeutic window. A cannabinoid drug pump is polymorphic and functionally lacking in many laboratory (C57BL/6, 129, CD-1) mice used for transgenesis, pharmacology, and toxicology studies. This phenotype was mapped and controlled by 1-3 genetic loci. ABCC1 within a cluster showing linkage is a cannabinoid CNS-drug pump. Global and conditional CB1 receptor-knockout mice were used as controls. In summary, CNS-excluded CB1 receptor agonists are a novel class of therapeutic agent for spasticity.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Sistema Nervioso Central/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Espasticidad Muscular/tratamiento farmacológico , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Animales , Cannabinoides/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...