Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897979

RESUMEN

Tau is a neuronal protein involved in axonal stabilization; however under pathological conditions, it triggers the deposition of insoluble neurofibrillary tangles, which are one of the biomarkers for Alzheimer's disease. The factors that might influence the fibrillation process are i) two cysteine residues in two pseudorepetitive regions, called R2 and R3, which can modulate protein-protein interaction via disulfide cross-linking; ii) an increase of reactive oxygen species affecting the post-translational modification of tau; and iii) cytotoxic levels of metals, especially ferric-heme (hemin), in hemolytic processes. Herein, we investigated how the cysteine-containing R3 peptide (R3C) and its Cys→Ala mutant (R3A) interact with hemin and how their binding affects the oxidative damage of the protein. The calculated binding constants are remarkably higher for the hemin-R3C complex (LogK1 = 5.90; LogK2 = 5.80) with respect to R3A (LogK1 = 4.44; LogK2 < 2), although NMR and CD investigations excluded the direct binding of cysteine as an iron axial ligand. Both peptides increase the peroxidase-like activity of hemin toward catecholamines and phenols, with a double catalytic efficiency detected for hemin-R3C systems. Moreover, the presence of cysteine significantly alters the susceptibility of R3 toward oxidative modifications, easily resulting in peptide dopamination and formation of cross-linked S-S derivatives.

2.
Chem Commun (Camb) ; 60(42): 5522-5525, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38695185

RESUMEN

Triptycene-based diiron(II) and dizinc(II) mesocates were obtained using a novel rigid ligand with two pyridylbenzimidazole chelating units fused into the triptycene scaffold. Studies on the diiron(II) assembly in solution showed that the complex undergoes thermal-induced one-step spin-crossover with T1/2 at 243 K (Evans method).

3.
J Inorg Biochem ; 256: 112548, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593610

RESUMEN

Neuromelanin (NM) plays a well-established role in neurological disorders pathogenesis; the mechanism of action is still discussed and the investigations in this field are limited by NM's complex and heterogeneous composition, insolubility, and low availability from human brains. An alternative can be offered by synthetic NM obtained from dopamine (DA) oxidative polymerization; however, a deep knowledge of the influence of both physicochemical parameters (T, pH, ionic strength) and other compounds in the reaction media (buffer, metal ions, other catecholamines) on DA oxidation process and, consequently, on synthetic NM features is mandatory to develop reliable NM preparation methodologies. To partially fulfill this aim, the present work focuses on defining the role of temperature, buffer and metal ions on both DA oxidation rate and DA oligomer size. DA oxidation in the specific conditions is monitored by UV-Vis spectroscopy and Principal Component Analysis (PCA) is run either on the raw spectra to model the background absorption increase, related to small DA oligomers formation, or on their first derivative to rationalize DA consumption. After having studied three case studies, 3-Way PCA is applied to directly evaluate the effect of temperature and buffer type on DA oxidation in the presence of different metal ions. Despite the proof-of-concept nature of the work and the number of compounds still to be included in the investigation, the preliminary results and the possibility to further expand the chemometric approach represent an interesting contribution to the field of in vitro simulation of NM synthesis.


Asunto(s)
Dopamina , Melaninas , Oxidación-Reducción , Polimerizacion , Análisis de Componente Principal , Dopamina/metabolismo , Dopamina/química , Melaninas/química , Melaninas/metabolismo , Melaninas/biosíntesis , Temperatura , Humanos , Tampones (Química) , Metales/química , Concentración de Iones de Hidrógeno
4.
Antioxidants (Basel) ; 12(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37507859

RESUMEN

Both ß-amyloid (Aß) peptides and oxidative stress conditions play key roles in Alzheimer's disease. Hemin contributes to the development of the disease as it possesses redox properties and its level increases in pathological conditions or traumatic brain injuries. The aim of this work was to deepen the investigation of the reactivity of the hemin-Aß16 complex, considering its ability to catalyze oxidation and nitration reactions. We performed kinetic studies in the presence of hydrogen peroxide and nitrite with phenolic and catechol substrates, as well as mass spectrometry studies to investigate the modifications occurring on the peptide itself. The kinetic constants were similar for oxidation and nitration reactions, and their values suggest that the hemin-Aß16 complex binds negatively charged substrates with higher affinity. Mass spectrometry studies showed that tyrosine residue is the endogenous target of nitration. Hemin degradation analysis showed that hemin bleaching is only partly prevented by the coordinated peptide. In conclusion, hemin has rich reactivity, both in oxidation and nitration reactions on aromatic substrates, that could contribute to redox equilibrium in neurons. This reactivity is modulated by the coordination of the Aß16 peptide and is only partly quenched when oxidative and nitrative conditions lead to hemin degradation.

5.
Molecules ; 28(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298963

RESUMEN

A challenge in mimicking tyrosinase activity using model compounds is to reproduce its enantioselectivity. Good enantioselection requires rigidity and a chiral center close to the active site. In this study, the synthesis of a new chiral copper complex, [Cu2(mXPhI)]4+/2+, based on an m-xylyl-bis(imidazole)-bis(benzimidazole) ligand containing a stereocenter with a benzyl residue directly bound on the copper chelating ring, is reported. Binding experiments show that the cooperation between the two metal centers is weak, probably due to steric hindrance given by the benzyl group. The dicopper(II) complex [Cu2(mXPhI)]4+ has catalytic activity in the oxidations of enantiomeric couples of chiral catechols, with an excellent discrimination capability for Dopa-OMe enantiomers and a different substrate dependence, hyperbolic or with substrate inhibition, for the L- or D- enantiomers, respectively. [Cu2(mXPhI)]4+ is active in a tyrosinase-like sulfoxidation of organic sulfides. The monooxygenase reaction requires a reducing co-substrate (NH2OH) and yields sulfoxide with significant enantiomeric excess (e.e.). Experiments with 18O2 and thioanisole yielded sulfoxide with 77% incorporation of 18O, indicating a reaction occurring mostly through direct oxygen transfer from the copper active intermediate to the sulfide. This mechanism and the presence of the chiral center of the ligand in the immediate copper coordination sphere are responsible for the good enantioselectivity observed.


Asunto(s)
Cobre , Monofenol Monooxigenasa , Monofenol Monooxigenasa/metabolismo , Cobre/química , Estructura Molecular , Fenilalanina , Ligandos , Biomimética , Sulfóxidos/química
6.
J Inorg Biochem ; 245: 112227, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156056

RESUMEN

Some hydrazones and Schiff bases derived from isatin, an endogenous oxindole formed in the metabolism of tryptophan, were obtained to investigate their effects on in vitro aggregation of ß-amyloid peptides (Aß), macromolecules implicated in Alzheimer's disease. Some hydrazone ligands, prepared by condensation reactions of isatin with hydrazine derivatives, showed a large affinity binding to the synthetic peptides Aß, particularly to Aß1-16. Measurements by NMR spectroscopy indicated that those interactions occur mainly at the metal binding site of the peptide, involving His6, His13, and His14 residues, and that hydrazone E-diastereoisomer interacts preferentially with the amyloid peptides. Experimental results were consistent with simulations using a docking approach, where it is demonstrated that the amino acid residues Glu3, His6, His13, and His14 are those that mostly interact with the ligands. Further, these oxindole-derived ligands can efficiently chelate copper(II) and zinc(II) ions, forming moderate stable [ML] 1:1 species. The corresponding formation constants were determined by UV/Vis spectroscopy, by titrations of the ligands with increasing amounts of metal salts, and the obtained log K values were in the range 2.74 to 5.11. Both properties, good affinity for amyloid peptides, and reasonably good capacity of chelating biometal ions, like copper and zinc, can explain the efficient inhibition of Aß fragments aggregation, as shown by experiments carried out with the oxindole derivatives in the presence of metal ions.


Asunto(s)
Enfermedad de Alzheimer , Isatina , Humanos , Péptidos beta-Amiloides/química , Oxindoles , Cobre/química , Ligandos , Metales , Enfermedad de Alzheimer/metabolismo , Zinc/química , Iones , Fragmentos de Péptidos/química
7.
Antioxidants (Basel) ; 12(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37107166

RESUMEN

α-Synuclein (αS), dopamine (DA), and iron have a crucial role in the etiology of Parkinson's disease. The present study aims to investigate the interplay between these factors by analyzing the DA/iron interaction and how it is affected by the presence of the C-terminal fragment of αS (Ac-αS119-132) that represents the iron-binding domain. At high DA:Fe molar ratios, the formation of the [FeIII(DA)2]- complex prevents the interaction with αS peptides, whereas, at lower DA:Fe molar ratios, the peptide is able to compete with one of the two coordinated DA molecules. This interaction is also confirmed by HPLC-MS analysis of the post-translational modifications of the peptide, where oxidized αS is observed through an inner-sphere mechanism. Moreover, the presence of phosphate groups in Ser129 (Ac-αSpS119-132) and both Ser129 and Tyr125 (Ac-αSpYpS119-132) increases the affinity for iron(III) and decreases the DA oxidation rate, suggesting that this post-translational modification may assume a crucial role for the αS aggregation process. Finally, αS interaction with cellular membranes is another key aspect for αS physiology. Our data show that the presence of a membrane-like environment induced an enhanced peptide effect over both the DA oxidation and the [FeIII(DA)2]- complex formation and decomposition.

8.
Biomolecules ; 13(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36830656

RESUMEN

α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson's disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal region. In addition, the interaction with metal ions can trigger αSyn conformation upon binding and/or through the metal-promoted generation of reactive oxygen species which lead to a cascade of structural alterations. For these reasons, the ternary interaction between αSyn, copper, and membranes needs to be elucidated in detail. Here, we investigated the structural properties of copper-αSyn binding through NMR, EPR, and XAS analyses, with particular emphasis on copper(I) coordination since the reduced state is particularly relevant for oxygen activation chemistry. The analysis was performed in different membrane model systems, such as micellar sodium dodecyl sulfate (SDS) and unilamellar vesicles, comparing the binding of full-length αSyn and N-terminal peptide fragments. The presence of membrane-like environments induced the formation of a copper:αSyn = 1:2 complex where Cu+ was bound to the Met1 and Met5 residues of two helical peptide chains. In this coordination, Cu+ is stabilized and is unreactive in the presence of O2 in catechol substrate oxidation.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Cobre/química , Enfermedad de Parkinson/metabolismo , Péptidos/metabolismo , Oxidación-Reducción
9.
IUBMB Life ; 75(1): 55-65, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35689524

RESUMEN

Neuromelanins are compounds accumulating in neurons of human and animal brain during aging, with neurons of substantia nigra and locus coeruleus having the highest levels of neuromelanins. These compounds have melanic, lipid, peptide, and inorganic components and are contained inside special autolysosomes. Neuromelanins can participate in neuroprotective or toxic processes occurring in Parkinson's disease according to cellular environment. Their synthesis depends on the concentration of cytosolic catechols and is a protective process since it prevents the toxic accumulation of catechols-derived reactive compounds. Neuromelanins can be neuroprotective also by binding reactive/toxic metals to produce stable and non-toxic complexes. Extraneuronal neuromelanin released by dying dopamine neurons in Parkinson's disease activates microglia which generate reactive oxygen species, reactive nitrogen species, and proinflammatory molecules, thus producing still neuroinflammation and neuronal death. Synthetic neuromelanins have been prepared with melanic, protein structure, and metal content closely mimicking the natural brain pigment, and these models are also able to activate microglia. Neuromelanins have different structure, synthesis, cellular/subcellular distribution, and role than melanins of hair, skin, and other tissues. The main common aspect between brain neuromelanin and peripheral melanin is the presence of eumelanin and/or pheomelanin moieties in their structure.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Melaninas/química , Melaninas/metabolismo , Neuronas Dopaminérgicas/metabolismo
10.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077778

RESUMEN

Exogenous nitric oxide appears a promising therapeutic approach to control cancer progression. Previously, a nickel-based nonoate, [Ni(SalPipNONO)], inhibited lung cancer cells, along with impairment of angiogenesis. The Zn(II) containing derivatives [Zn(PipNONO)Cl] exhibited a protective effect on vascular endothelium. Here, we have evaluated the antitumor properties of [Zn(PipNONO)Cl] in human lung cancer (A549) and melanoma (A375) cells. Metastasis initiates with the epithelial-mesenchymal transition (EMT) process, consisting of the acquisition of invasive and migratory properties by tumor cells. At not cytotoxic levels, the nonoate significantly impaired A549 and A375 EMT induced by transforming growth factor-ß1 (TGF-ß1). Reduction of the mesenchymal marker vimentin, upregulated by TGF-ß1, and restoration of the epithelial marker E-cadherin, reduced by TGF-ß1, were detected in both tumor cell lines in the presence of Zn-nonoate. Further, the endothelial-mesenchymal transition achieved in a tumor-endothelial cell co-culture was assessed. Endothelial cells co-cultured with A549 or A375 acquired a mesenchymal phenotype with increased vimentin, alpha smooth muscle actin and Smad2/3, and reduced VE-cadherin. The presence of [Zn(PipNONO)Cl] maintained a typical endothelial phenotype. In conclusion, [Zn(PipNONO)Cl] appears a promising therapeutic tool to control tumor growth and metastasis, by acting on both tumor and endothelial cells, reprogramming the cells toward their physiologic phenotypes.

11.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142637

RESUMEN

Tau is a widespread neuroprotein that regulates the cytoskeleton assembly. In some neurological disorders, known as tauopathies, tau is dissociated from the microtubule and forms insoluble neurofibrillary tangles. Tau comprises four pseudorepeats (R1-R4), containing one (R1, R2, R4) or two (R3) histidines, that potentially act as metal binding sites. Moreover, Cys291 and Cys322 in R2 and R3, respectively, might have an important role in protein aggregation, through possible disulfide bond formation, and/or affecting the binding and reactivity of redox-active metal ions, as copper. We, therefore, compare the interaction of copper with octadeca-R3-peptide (R3C) and with the mutant containing an alanine residue (R3A) to assess the role of thiol group. Spectrophotometric titrations allow to calculate the formation constant of the copper(I) complexes, showing a remarkable stronger interaction in the case of R3C (log Kf = 13.4 and 10.5 for copper(I)-R3C and copper(I)-R3A, respectively). We also evaluate the oxidative reactivity associated to these copper complexes in the presence of dopamine and ascorbate. Both R3A and R3C peptides increase the capability of copper to oxidize catechols, but copper-R3C displays a peculiar mechanism due to the presence of cysteine. HPLC-MS analysis shows that cysteine can form disulfide bonds and dopamine-Cys covalent adducts, with potential implication in tau aggregation process.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Alanina , Enfermedad de Alzheimer/metabolismo , Cobre/metabolismo , Cisteína , Disulfuros , Dopamina , Humanos , Péptidos/química , Agregado de Proteínas , Proteínas tau/metabolismo
12.
Angew Chem Int Ed Engl ; 61(32): e202204787, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35670285

RESUMEN

Water-soluble melanin-protein-Fe/Cu conjugates derived from norepinephrine and fibrillar ß-lactoglobulin are reliable models for neuromelanin (NM) of human brain locus coeruleus. Both iron and copper promote catecholamine oxidation and exhibit strong tendency to remain coupled in oligonuclear aggregates. The Fe-Cu clusters are EPR silent and affect the 1 H NMR spectra of the conjugates through a specific sequence of signals. Derivatives containing only Fe or Cu exhibit different NMR patterns. The EPR spectra show weak signals of paramagnetic FeIII in conjugates containing Fe or mixed Fe-Cu sites due to small amounts of mononuclear centers. The latter derivatives exhibit EPR signals for isolated CuII centers. These features parallel the EPR behavior of NM from locus coeruleus. The spectral data indicate that FeIII is bound to the melanic fraction, whereas CuII is bound on the protein fibrils, suggesting that the Fe-Cu clusters occur at the interface between the two components of the synthetic NMs.


Asunto(s)
Melaninas , Agua , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/química , Humanos , Locus Coeruleus/metabolismo , Melaninas/química , Norepinefrina
13.
Antioxidants (Basel) ; 10(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064062

RESUMEN

Neuromelanin (NM) accumulates in catecholamine long-lived brain neurons that are lost in neurodegenerative diseases. NM is a complex substance made of melanic, peptide and lipid components. NM formation is a natural protective process since toxic endogenous metabolites are removed during its formation and as it binds excess metals and xenobiotics. However, disturbances of NM synthesis and function could be toxic. Here, we review recent knowledge on NM formation, toxic mechanisms involving NM, go over NM binding substances and suggest experimental models that can help identifying xenobiotic modulators of NM formation or function. Given the high likelihood of a central NM role in age-related human neurodegenerative diseases such as Parkinson's and Alzheimer's, resembling such diseases using animal models that do not form NM to a high degree, e.g., mice or rats, may not be optimal. Rather, use of animal models (i.e., sheep and goats) that better resemble human brain aging in terms of NM formation, as well as using human NM forming stem cellbased in vitro (e.g., mid-brain organoids) models can be more suitable. Toxicants could also be identified during chemical synthesis of NM in the test tube.

14.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068879

RESUMEN

The redox chemistry of copper(II) is strongly modulated by the coordination to amyloid-ß peptides and by the stability of the resulting complexes. Amino-terminal copper and nickel binding motifs (ATCUN) identified in truncated Aß sequences starting with Phe4 show very high affinity for copper(II) ions. Herein, we study the oxidase activity of [Cu-Aß4-x] and [Cu-Aß1-x] complexes toward dopamine and other catechols. The results show that the CuII-ATCUN site is not redox-inert; the reduction of the metal is induced by coordination of catechol to the metal and occurs through an inner sphere reaction. The generation of a ternary [CuII-Aß-catechol] species determines the efficiency of the oxidation, although the reaction rate is ruled by reoxidation of the CuI complex. In addition to the N-terminal coordination site, the two vicinal histidines, His13 and His14, provide a second Cu-binding motif. Catechol oxidation studies together with structural insight from the mixed dinuclear complexes Ni/Cu-Aß4-x reveal that the His-tandem is able to bind CuII ions independently of the ATCUN site, but the N-terminal metal complexation reduces the conformational mobility of the peptide chain, preventing the binding and oxidative reactivity toward catechol of CuII bound to the secondary site.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Complejos de Coordinación/metabolismo , Cobre/metabolismo , Dopamina/metabolismo , Oxidorreductasas/metabolismo , Péptidos beta-Amiloides/química , Complejos de Coordinación/química , Cobre/química , Dopamina/química , Histidina/química , Histidina/metabolismo , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Oxidorreductasas/química
15.
Inorg Chem ; 60(2): 606-613, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33405903

RESUMEN

Interaction of copper ions with Aß peptides alters the redox activity of the metal ion and can be associated with neurodegeneration. Many studies deal with the characterization of the copper binding mode responsible for the reactivity. Oxidation experiments of dopamine and related catechols by copper(II) complexes with the N-terminal amyloid-ß peptides Aß16 and Aß9, and the Aß16[H6A] and Aß16[H13A] mutant forms, both in their free amine and N-acetylated forms show that efficient reactivity requires the oxygenation of a CuI-bis(imidazole) complex with a bound substrate. Therefore, the active intermediate for catechol oxidation differs from the proposed "in-between state" for the catalytic oxidation of ascorbate. During the catechol oxidation process, hydrogen peroxide and superoxide anion are formed but give only a minor contribution to the reaction.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Catecol Oxidasa/metabolismo , Complejos de Coordinación/metabolismo , Cobre/metabolismo , Imidazoles/metabolismo , Péptidos beta-Amiloides/síntesis química , Péptidos beta-Amiloides/química , Biocatálisis , Catecol Oxidasa/química , Complejos de Coordinación/química , Cobre/química , Imidazoles/química , Cinética , Estructura Molecular , Oxidación-Reducción
16.
Molecules ; 25(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143109

RESUMEN

The peroxidase activity of hemin-peptide complexes remains a potential factor in oxidative damage relevant to neurodegeneration. Here, we present the effect of temperature, ionic strength, and pH relevant to pathophysiological conditions on the dynamic equilibrium between high-spin and low-spin hemin-Aß40 constructs. This influence on peroxidase activity was also demonstrated using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and dopamine (DA) oxidation rate analyses with increasing ratios of Aß16 and Aß40 (up to 100 equivalents). Interaction and reactivity studies of aggregated Aß40-hemin revealed enhanced peroxidase activity versus hemin alone. Comparison of the results obtained using Aß16 and Aß40 amyloid beta peptides revealed marked differences and provide insight into the potential effects of hemin-Aß on neurological disease progression.


Asunto(s)
Péptidos beta-Amiloides/química , Benzotiazoles/química , Dopamina/química , Hemina/química , Fragmentos de Péptidos/química , Peroxidasas/química , Ácidos Sulfónicos/química , Humanos , Oxidación-Reducción
17.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066163

RESUMEN

We investigate the interaction of hemin with four fragments of prion protein (PrP) containing from one to four histidines (PrP106-114, PrP95-114, PrP84-114, PrP76-114) for its potential relevance to prion diseases and possibly traumatic brain injury. The binding properties of hemin-PrP complexes have been evaluated by UV-visible spectrophotometric titration. PrP peptides form a 1:1 adduct with hemin with affinity that increases with the number of histidines and length of the peptide; the following log K1 binding constants have been calculated: 6.48 for PrP76-114, 6.1 for PrP84-114, 4.80 for PrP95-114, whereas for PrP106-114, the interaction is too weak to allow a reliable binding constant calculation. These constants are similar to that of amyloid-ß (Aß) for hemin, and similarly to hemin-Aß, PrP peptides tend to form a six-coordinated low-spin complex. However, the concomitant aggregation of PrP induced by hemin prevents calculation of the K2 binding constant. The turbidimetry analysis of [hemin-PrP76-114] shows that, once aggregated, this complex is scarcely soluble and undergoes precipitation. Finally, a detailed study of the peroxidase-like activity of [hemin-(PrP)] shows a moderate increase of the reactivity with respect to free hemin, but considering the activity over long time, as for neurodegenerative pathologies, it might contribute to neuronal oxidative stress.


Asunto(s)
Hemina/química , Fragmentos de Péptidos/química , Proteínas Priónicas/química , Sitios de Unión , Oxidación-Reducción , Fragmentos de Péptidos/metabolismo , Polimerizacion , Unión Proteica
18.
Inorg Chem ; 59(1): 274-286, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31820933

RESUMEN

Tau protein is present in significant amounts in neurons, where it contributes to the stabilization of microtubules. Insoluble neurofibrillary tangles of tau are associated with several neurological disorders known as tauopathies, among which is Alzheimer's disease. In neurons, tau binds tubulin through its microtubule binding domain which comprises four imperfect repeats (R1-R4). The histidine residues contained in these fragments are potential binding sites for metal ions and are located close to the regions that drive the formation of amyloid aggregates of tau. In this study, we present a detailed characterization through potentiometric and spectroscopic methods of the binding of copper in both oxidation states to R1 and R3 peptides, which contain one and two histidine residues, respectively. We also evaluate how the redox cycling of copper bound to tau peptides can mediate oxidation that can potentially target exogenous substrates such as neuronal catecholamines. The resulting quinone oxidation products undergo oligomerization and can competitively give post-translational peptide modifications yielding catechol adducts at amino acid residues. The presence of His-His tandem in the R3 peptide strongly influences both the binding of copper and the reactivity of the resulting copper complex. In particular, the presence of the two adjacent histidines makes the copper(I) binding to R3 much stronger than in R1. The copper-R3 complex is also much more active than the copper-R1 complex in promoting oxidative reactions, indicating that the two neighboring histidines activate copper as a catalyst in molecular oxygen activation reactions.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Fragmentos de Péptidos/química , Proteínas tau/química , Sitios de Unión , Humanos , Conformación Molecular
19.
Inorg Chem ; 59(1): 900-912, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31869218

RESUMEN

The combination between dyshomeostatic levels of catecholamine neurotransmitters and redox-active metals such as copper and iron exacerbates the oxidative stress condition that typically affects neurodegenerative diseases. We report a comparative study of the oxidative reactivity of copper complexes with amyloid-ß (Aß40) and the prion peptide fragment 76-114 (PrP76-114), containing the high-affinity binding site, toward dopamine and 4-methylcatechol, in aqueous buffer and in sodium dodecyl sulfate micelles, as a model membrane environment. The competitive oxidative and covalent modifications undergone by the peptides were also evaluated. The high binding affinity of Cu/peptide to micelles and lipid membranes leads to a strong reduction (Aß40) and quenching (PrP76-114) of the oxidative efficiency of the binary complexes and to a stabilization and redox silencing of the ternary complex CuII/Aß40/PrP76-114, which is highly reactive in solution. The results improve our understanding of the pathological and protective effects associated with these complexes, depending on the physiological environment.


Asunto(s)
Péptidos beta-Amiloides/química , Cobre/química , Dopamina/química , Priones/química , Dodecil Sulfato de Sodio/química , Sitios de Unión , Humanos , Micelas , Conformación Molecular , Solubilidad
20.
ACS Chem Neurosci ; 10(8): 3731-3739, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31298828

RESUMEN

The neurotoxic activity of the tryptophan metabolite 3-hydroxykynurenine (3OHKyn) in neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, is related to oxidative stress and 3OHKyn interaction with cellular proteins. The pattern of protein modification induced by 3OHKyn involves the nucleophilic side chains of Cys, His, and Lys residues, similarly to the one promoted by dopamine and other catecholamines. In the present work, we have analyzed the reactivity of 3OHKyn toward the neuronal targets α-synuclein (and its N-terminal fragments 1-6 and 1-15) and amyloid-ß peptides (1-16 and 1-28) and characterized the resulting conjugates through spectrometric (LC-MS/MS) and spectroscopic (UV-vis, fluorescence, NMR) techniques. The amino acid residues of α-synuclein and amyloid-ß peptides involved in derivatizations by 3OHKyn and its autoxidation products (belonging to the xanthommatin family) are Lys and His, respectively. The pattern of protein modification is expanded in the conjugates obtained in the presence of the metal ions copper(II) or iron(III), reflecting a more oxidizing environment that in addition to adducts with protein/peptide residues also favors the fragmentation of the protein. These results open the perspective to using the 3OHKyn-protein/peptide synthetic conjugates to explore their competence to activate microglia cell cultures as well as to unravel their role in neuroinflammatory conditions.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Quinurenina/análogos & derivados , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , alfa-Sinucleína/metabolismo , Células Cultivadas , Cromatografía Liquida , Humanos , Quinurenina/farmacología , Espectroscopía de Resonancia Magnética , Enfermedades Neurodegenerativas , Neuronas/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA