Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 25(1): 103574, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34988408

RESUMEN

Heart disease is the leading cause of death with no method to repair damaged myocardium due to the limited proliferative capacity of adult cardiomyocytes. Curiously, mouse neonates and zebrafish can regenerate their hearts via cardiomyocyte de-differentiation and proliferation. However, a molecular mechanism of why these cardiomyocytes can re-enter cell cycle is poorly understood. Here, we identify a unique metabolic state that primes adult zebrafish and neonatal mouse ventricular cardiomyocytes to proliferate. Zebrafish and neonatal mouse hearts display elevated glutamine levels, predisposing them to amino-acid-driven activation of TOR, and that TOR activation is required for zebrafish cardiomyocyte regeneration in vivo. Through a multi-omics approach with cellular validation we identify metabolic and mitochondrial changes during the first week of regeneration. These data suggest that regeneration of zebrafish myocardium is driven by metabolic remodeling and reveals a unique metabolic regulator, TOR-primed state, in which zebrafish and mammalian cardiomyocytes are regeneration competent.

2.
Sci Rep ; 11(1): 17220, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446743

RESUMEN

Primary cilia protrude from the apical surface of many cell types and act as a sensory organelle that regulates diverse biological processes ranging from chemo- and mechanosensation to signaling. Ciliary dysfunction is associated with a wide array of genetic disorders, known as ciliopathies. Polycystic lesions are commonly found in the kidney, liver, and pancreas of ciliopathy patients and mouse models. However, the pathogenesis of the pancreatic phenotype remains poorly understood. Chibby1 (Cby1), a small conserved coiled-coil protein, localizes to the ciliary base and plays a crucial role in ciliogenesis. Here, we report that Cby1-knockout (KO) mice develop severe exocrine pancreatic atrophy with dilated ducts during early postnatal development. A significant reduction in the number and length of cilia was observed in Cby1-KO pancreta. In the adult Cby1-KO pancreas, inflammatory cell infiltration and fibrosis were noticeable. Intriguingly, Cby1-KO acinar cells showed an accumulation of zymogen granules (ZGs) with altered polarity. Moreover, isolated acini from Cby1-KO pancreas exhibited defective ZG secretion in vitro. Collectively, our results suggest that, upon loss of Cby1, concomitant with ciliary defects, acinar cells accumulate ZGs due to defective exocytosis, leading to cell death and progressive exocrine pancreatic degeneration after birth.


Asunto(s)
Proteínas Portadoras/genética , Cilios/metabolismo , Páncreas Exocrino/metabolismo , Páncreas/metabolismo , Pancreatitis/genética , Células Acinares/metabolismo , Animales , Atrofia , Proteínas Portadoras/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Exocitosis/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Páncreas/patología , Páncreas/ultraestructura , Páncreas Exocrino/patología , Pancreatitis/metabolismo , Vesículas Secretoras/metabolismo
3.
Cell Chem Biol ; 28(5): 625-635.e5, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33503403

RESUMEN

Wnt signaling plays a central role in tissue maintenance and cancer. Wnt activates downstream genes through ß-catenin, which interacts with TCF/LEF transcription factors. A major question is how this signaling is coordinated relative to tissue organization and renewal. We used a recently described class of small molecules that binds tubulin to reveal a molecular cascade linking stress signaling through ATM, HIPK2, and p53 to the regulation of TCF/LEF transcriptional activity. These data suggest a mechanism by which mitotic and genotoxic stress can indirectly modulate Wnt responsiveness to exert coherent control over cell shape and renewal. These findings have implications for understanding tissue morphogenesis and small-molecule anticancer therapeutics.


Asunto(s)
Sondas Moleculares/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción TCF/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Animales , Células Cultivadas , Humanos , Masculino , Sondas Moleculares/química , Bibliotecas de Moléculas Pequeñas/química , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Xenopus , Pez Cebra , beta Catenina/genética , beta Catenina/metabolismo
5.
Sci Rep ; 9(1): 2195, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778087

RESUMEN

Tissue resident adult stem cells are known to participate in tissue regeneration and repair that follows cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs), a population of adult stem cells that is known to participate in the repair of an injured tooth, and its properties can be affected by aging. The dental pulp from third molars of a diverse patient group were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteo/odontogenic and adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-ß) pathway and the cytoskeletal proteins are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging.


Asunto(s)
Senescencia Celular , Pulpa Dental/citología , Metabolismo Energético , Células Madre/citología , Células Madre/metabolismo , Adipogénesis , Biomarcadores , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunofenotipificación , Odontogénesis , Osteogénesis , Proteómica , Transducción de Señal , Transcriptoma
6.
iScience ; 2: 88-100, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29888752

RESUMEN

Cardiac development requires coordinated biphasic regulation of the WNT/ß-catenin signaling pathway. By intersecting gene expression and loss-of-function siRNA screens we identified Alpha Protein Kinase 2 (ALPK2) as a candidate negative regulator of WNT/ß-catenin signaling in cardiogenesis. In differentiating human embryonic stem cells (hESCs), ALPK2 is highly induced as hESCs transition from mesoderm to cardiac progenitors. Using antisense knockdown and CRISPR/Cas9 mutagenesis in hESCs and zebrafish, we demonstrate that ALPK2 promotes cardiac function and cardiomyocyte differentiation. Quantitative phosphoproteomics, protein expression profiling, and ß-catenin reporter assays demonstrate that loss of ALPK2 led to stabilization of ß-catenin and increased WNT signaling. Furthermore, cardiac defects attributed to ALPK2 depletion can be rescued in a dose-dependent manner by direct inhibition of WNT signaling through the small molecule XAV939. Together, these results demonstrate that ALPK2 regulates ß-catenin-dependent signaling during developmental commitment of cardiomyocytes.

7.
Cell Stem Cell ; 22(6): 929-940.e4, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29779890

RESUMEN

Organoids derived from human pluripotent stem cells are a potentially powerful tool for high-throughput screening (HTS), but the complexity of organoid cultures poses a significant challenge for miniaturization and automation. Here, we present a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. The entire 21-day protocol, from plating to differentiation to analysis, can be performed automatically by liquid-handling robots, or alternatively by manual pipetting. High-content imaging analysis reveals both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identify previously undetected parietal, interstitial, and partially differentiated compartments within organoids and define conditions that greatly expand the vascular endothelium. Chemical modulation of toxicity and disease phenotypes can be quantified for safety and efficacy prediction. Screening in gene-edited organoids in this system reveals an unexpected role for myosin in polycystic kidney disease. Organoids in HTS formats thus establish an attractive platform for multidimensional phenotypic screening.


Asunto(s)
Diferenciación Celular , Ensayos Analíticos de Alto Rendimiento , Riñón/citología , Organoides/citología , Fenotipo , Células Madre Pluripotentes/citología , Automatización , Técnicas de Cultivo de Célula , Humanos , Análisis de Secuencia de ARN
8.
Proc Natl Acad Sci U S A ; 114(38): 10125-10130, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28864533

RESUMEN

The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development.


Asunto(s)
Simulación por Computador , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Histonas/química , Células Madre Embrionarias Humanas/citología , Humanos , Metilación , Complejo Represivo Polycomb 2/química
9.
Proc Natl Acad Sci U S A ; 114(5): E717-E726, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096348

RESUMEN

Regeneration requires cells to regulate proliferation and patterning according to their spatial position. Positional memory is a property that enables regenerating cells to recall spatial information from the uninjured tissue. Positional memory is hypothesized to rely on gradients of molecules, few of which have been identified. Here, we quantified the global abundance of transcripts, proteins, and metabolites along the proximodistal axis of caudal fins of uninjured and regenerating adult zebrafish. Using this approach, we uncovered complex overlapping expression patterns for hundreds of molecules involved in diverse cellular functions, including development, bioelectric signaling, and amino acid and lipid metabolism. Moreover, 32 genes differentially expressed at the RNA level had concomitant differential expression of the encoded proteins. Thus, the identification of proximodistal differences in levels of RNAs, proteins, and metabolites will facilitate future functional studies of positional memory during appendage regeneration.


Asunto(s)
Aletas de Animales/fisiología , Pez Cebra , Animales , Femenino , Masculino , Metabolómica , Proteómica , Regeneración/fisiología , Transcriptoma , Pez Cebra/genética , Pez Cebra/metabolismo , Pez Cebra/fisiología
10.
Proc Natl Acad Sci U S A ; 113(42): E6382-E6390, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698112

RESUMEN

In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/ß-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/ß-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of ß-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/ß-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/ß-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Vía de Señalización Wnt , Apoptosis , Benzotiazoles/farmacología , Biomarcadores , Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Ensayo de Unidades Formadoras de Colonias , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Compuestos Heterocíclicos con 3 Anillos/farmacología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Modelos Biológicos , Proteómica/métodos , ARN Interferente Pequeño/genética , Vía de Señalización Wnt/efectos de los fármacos
11.
Biochem Biophys Res Commun ; 477(4): 952-956, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387232

RESUMEN

Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/ß-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/ß-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/ß-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/ß-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/ß-catenin signaling in adult and larval zebrafish spinal cord regeneration.


Asunto(s)
Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/fisiología , Médula Espinal/fisiopatología , Vía de Señalización Wnt , Pez Cebra/fisiología , beta Catenina/metabolismo , Animales , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Regulación hacia Arriba , Pez Cebra/anatomía & histología
12.
Proc Natl Acad Sci U S A ; 113(21): E2945-54, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162353

RESUMEN

The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/ß-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Receptores Frizzled/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Vía de Señalización Wnt , Animales , Proteínas de Unión al ADN/genética , Receptores Frizzled/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Neoplasias Experimentales/genética , Proteínas Oncogénicas/genética , Proteínas Proto-Oncogénicas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Sci Signal ; 9(422): eg5, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27048563

RESUMEN

This Editorial Guide uses Wnt-stimulated activation of the transcriptional activity of ß-catenin, the canonical Wnt/ß-catenin pathway, to illustrate the hazards of limiting research investigation and questions to those that fit the "canonical" view.


Asunto(s)
Activación Transcripcional , Vía de Señalización Wnt , beta Catenina/metabolismo , Humanos , Publicaciones Periódicas como Asunto
14.
Proc Natl Acad Sci U S A ; 113(4): 1002-7, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755607

RESUMEN

To reveal the molecular mechanisms involved in cardiac lineage determination and differentiation, we quantified the proteome of human embryonic stem cells (hESCs), cardiac progenitor cells (CPCs), and cardiomyocytes during a time course of directed differentiation by label-free quantitative proteomics. This approach correctly identified known stage-specific markers of cardiomyocyte differentiation, including SRY-box2 (SOX2), GATA binding protein 4 (GATA4), and myosin heavy chain 6 (MYH6). This led us to determine whether our proteomic screen could reveal previously unidentified mediators of heart development. We identified Disabled 2 (DAB2) as one of the most dynamically expressed proteins in hESCs, CPCs, and cardiomyocytes. We used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis in zebrafish to assess whether DAB2 plays a functional role during cardiomyocyte differentiation. We found that deletion of Dab2 in zebrafish embryos led to a significant reduction in cardiomyocyte number and increased endogenous WNT/ß-catenin signaling. Furthermore, the Dab2-deficient defects in cardiomyocyte number could be suppressed by overexpression of dickkopf 1 (DKK1), an inhibitor of WNT/ß-catenin signaling. Thus, inhibition of WNT/ß-catenin signaling by DAB2 is essential for establishing the correct number of cardiomyocytes in the developing heart. Our work demonstrates that quantifying the proteome of human stem cells can identify previously unknown developmental regulators.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Corazón/embriología , Proteómica , Proteínas Supresoras de Tumor/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología , Animales , Proteínas Reguladoras de la Apoptosis , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/citología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Miocitos Cardíacos/citología , Pez Cebra/embriología
15.
J Virol ; 90(5): 2240-53, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26656717

RESUMEN

UNLABELLED: The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE: As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Vía de Señalización Wnt/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Inflamación/patología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Pulmón/patología , Pulmón/virología , Ratones Endogámicos BALB C , ARN Polimerasa Dependiente del ARN/genética , Virus Reordenados/enzimología , Virus Reordenados/patogenicidad , Proteínas Virales/genética , Virulencia , Factores de Virulencia/genética
16.
Nat Cell Biol ; 17(12): 1523-35, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26571212

RESUMEN

For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs).  Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development.


Asunto(s)
Diferenciación Celular , Epigénesis Genética/genética , Células Madre Embrionarias Humanas/metabolismo , Metaboloma , Animales , Western Blotting , Células Cultivadas , Células Madre Embrionarias/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica/métodos , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Lisina/metabolismo , Espectrometría de Masas , Metabolómica/métodos , Metilación , Ratones , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Proteómica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , S-Adenosilmetionina/metabolismo , Transducción de Señal
17.
Blood ; 126(15): 1785-9, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26333776

RESUMEN

Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/ß-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that ß-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/ß-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia.


Asunto(s)
Aberraciones Cromosómicas , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Proteínas de Fusión Oncogénica/genética , Translocación Genética/genética , Proteínas Wnt/genética , beta Catenina/genética , Células Cultivadas , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 8/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Técnica del Anticuerpo Fluorescente , Células Madre Hematopoyéticas/citología , Humanos , Hibridación Fluorescente in Situ , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , Proteína 1 Compañera de Translocación de RUNX1 , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/genética
18.
Stem Cell Reports ; 5(2): 291-304, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26267830

RESUMEN

The in vitro derivation of hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) is complicated by the existence of multiple overlapping embryonic blood cell programs called primitive, erythromyeloid progenitor (EMP), and definitive. As HSCs are only generated during the definitive stage of hematopoiesis, deciphering the regulatory pathways that control the emergence of this program and identifying markers that distinguish it from the other programs are essential. To identify definitive specific pathways and marker sets, we used label-free proteomics to determine the proteome of embryo-derived and mouse embryonic stem cell-derived VE-CADHERIN(+)CD45(-) definitive hematopoietic progenitors. With this approach, we identified Stat1 as a marker that distinguishes the definitive erythroid lineage from the primitive- and EMP-derived lineages. Additionally, we provide evidence that the generation of the Stat1(+) definitive lineage is dependent on Sox17. These findings establish an approach for monitoring the emergence of definitive hematopoiesis in the PSC differentiation cultures.


Asunto(s)
Células Progenitoras Endoteliales/citología , Proteínas HMGB/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes/citología , Proteoma , Factores de Transcripción SOXF/metabolismo , Animales , Linaje de la Célula , Células Cultivadas , Células Progenitoras Endoteliales/metabolismo , Proteínas HMGB/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOXF/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
19.
Development ; 142(18): 3198-209, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26153229

RESUMEN

During vertebrate development, mesodermal fate choices are regulated by interactions between morphogens such as activin/nodal, BMPs and Wnt/ß-catenin that define anterior-posterior patterning and specify downstream derivatives including cardiomyocyte, endothelial and hematopoietic cells. We used human embryonic stem cells to explore how these pathways control mesodermal fate choices in vitro. Varying doses of activin A and BMP4 to mimic cytokine gradient polarization in the anterior-posterior axis of the embryo led to differential activity of Wnt/ß-catenin signaling and specified distinct anterior-like (high activin/low BMP) and posterior-like (low activin/high BMP) mesodermal populations. Cardiogenic mesoderm was generated under conditions specifying anterior-like mesoderm, whereas blood-forming endothelium was generated from posterior-like mesoderm, and vessel-forming CD31(+) endothelial cells were generated from all mesoderm origins. Surprisingly, inhibition of ß-catenin signaling led to the highly efficient respecification of anterior-like endothelium into beating cardiomyocytes. Cardiac respecification was not observed in posterior-derived endothelial cells. Thus, activin/BMP gradients specify distinct mesodermal subpopulations that generate cell derivatives with unique angiogenic, hemogenic and cardiogenic properties that should be useful for understanding embryogenesis and developing therapeutics.


Asunto(s)
Transdiferenciación Celular/fisiología , Endotelio/fisiología , Mesodermo/fisiología , Miocitos Cardíacos/fisiología , Transducción de Señal/fisiología , beta Catenina/antagonistas & inhibidores , Activinas/farmacología , Análisis de Varianza , Secuencia de Bases , Proteína Morfogenética Ósea 4/farmacología , Técnicas de Cultivo de Célula , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Endotelio/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Mesodermo/citología , Datos de Secuencia Molecular , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos
20.
J Clin Invest ; 125(5): 2032-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25866967

RESUMEN

Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin-expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin⁺CD45⁺ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications.


Asunto(s)
Aorta/embriología , Células Endoteliales/fisiología , Endotelio Vascular/embriología , Gónadas/embriología , Sistema Hematopoyético/embriología , Mesonefro/embriología , Receptor Notch1/fisiología , Receptor Notch2/fisiología , Nicho de Células Madre/fisiología , Animales , Antígenos CD/análisis , Cadherinas/análisis , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Endotelio Vascular/citología , Femenino , Supervivencia de Injerto , Trasplante de Células Madre Hematopoyéticas , Péptidos y Proteínas de Señalización Intracelular/fisiología , Antígenos Comunes de Leucocito/análisis , Masculino , Proteínas de la Membrana/fisiología , Ratones Congénicos , Ratones Endogámicos C57BL , Quimera por Radiación , Transducción de Señal , Células del Estroma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA