Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(3): 888-896, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31332262

RESUMEN

Vascular endothelial growth factor (VEGF) is associated with the clinical manifestation of Alzheimer's disease (AD). However, the role of the VEGF gene family in neuroprotection is complex due to the number of biological pathways they regulate. This study explored associations between brain expression of VEGF genes with cognitive performance and AD pathology. Genetic, cognitive, and neuropathology data were acquired from the Religious Orders Study and Rush Memory and Aging Project. Expression of ten VEGF ligand and receptor genes was quantified using RNA sequencing of prefrontal cortex tissue. Global cognitive composite scores were calculated from 17 neuropsychological tests. ß-amyloid and tau burden were measured at autopsy. Participants (n = 531) included individuals with normal cognition (n = 180), mild cognitive impairment (n = 148), or AD dementia (n = 203). Mean age at death was 89 years and 37% were male. Higher prefrontal cortex expression of VEGFB, FLT4, FLT1, and PGF was associated with worse cognitive trajectories (p ≤ 0.01). Increased expression of VEGFB and FLT4 was also associated with lower cognition scores at the last visit before death (p ≤ 0.01). VEGFB, FLT4, and FLT1 were upregulated among AD dementia compared with normal cognition participants (p ≤ 0.03). All four genes associated with cognition related to elevated ß-amyloid (p ≤ 0.01) and/or tau burden (p ≤ 0.03). VEGF ligand and receptor genes, specifically genes relevant to FLT4 and FLT1 receptor signaling, are associated with cognition, longitudinal cognitive decline, and AD neuropathology. Future work should confirm these observations at the protein level to better understand how changes in VEGF transcription and translation relate to neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Cognitivo , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Envejecimiento , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Encéfalo , Disfunción Cognitiva/genética , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Factor A de Crecimiento Endotelial Vascular/genética
2.
Brain ; 143(8): 2561-2575, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844198

RESUMEN

Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer's disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer's disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer's disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Disfunción Cognitiva/genética , Reserva Cognitiva/fisiología , Anciano de 80 o más Años , Envejecimiento/patología , Cromosomas Humanos Par 18/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple
3.
Genes Brain Behav ; 19(7): e12654, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32248644

RESUMEN

Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7 ), a G protein-coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.


Asunto(s)
Trastornos Relacionados con Anfetaminas/genética , Epilepsia/genética , Trastornos del Neurodesarrollo/genética , Receptores de Glutamato Metabotrópico/genética , Animales , Femenino , Aprendizaje , Masculino , Ratones , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Receptores de Glutamato Metabotrópico/deficiencia , Sueño , Conducta Social
4.
Sci Signal ; 13(617)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019899

RESUMEN

Signaling bias is the propensity for some agonists to preferentially stimulate G protein-coupled receptor (GPCR) signaling through one intracellular pathway versus another. We previously identified a G protein-biased agonist of the D2 dopamine receptor (D2R) that results in impaired ß-arrestin recruitment. This signaling bias was predicted to arise from unique interactions of the ligand with a hydrophobic pocket at the interface of the second extracellular loop and fifth transmembrane segment of the D2R. Here, we showed that residue Phe189 within this pocket (position 5.38 using Ballesteros-Weinstein numbering) functions as a microswitch for regulating receptor interactions with ß-arrestin. This residue is relatively conserved among class A GPCRs, and analogous mutations within other GPCRs similarly impaired ß-arrestin recruitment while maintaining G protein signaling. To investigate the mechanism of this signaling bias, we used an active-state structure of the ß2-adrenergic receptor (ß2R) to build ß2R-WT and ß2R-Y1995.38A models in complex with the full ß2R agonist BI-167107 for molecular dynamics simulations. These analyses identified conformational rearrangements in ß2R-Y1995.38A that propagated from the extracellular ligand binding site to the intracellular surface, resulting in a modified orientation of the second intracellular loop in ß2R-Y1995.38A, which is predicted to affect its interactions with ß-arrestin. Our findings provide a structural basis for how ligand binding site alterations can allosterically affect GPCR-transducer interactions and result in biased signaling.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/química , beta-Arrestinas/genética
5.
Neurobiol Aging ; 87: 18-25, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31791659

RESUMEN

Literature suggests vascular endothelial growth factor A (VEGFA) is protective among those at highest risk for Alzheimer's disease (AD). Apolipoprotein E (APOE) ε4 allele carriers represent a highly susceptible population for cognitive decline, and VEGF may confer distinct protection among APOE-ε4 carriers. We evaluated interactions between cortical expression of 10 VEGF gene family members and APOE-ε4 genotype to clarify which VEGF genes modify the association between APOE-ε4 and cognitive decline. Data were obtained from the Religious Orders Study and Rush Memory and Aging Project (N = 531). Linear regression assessed interactions on global cognition. VEGF genes NRP1 and VEGFA interacted with APOE-ε4 on cognitive performance (p.fdr < 0.05). Higher NRP1 expression correlated with worse outcomes among ε4 carriers but better outcomes among ε4 noncarriers, suggesting NRP1 modifies the risk for poor cognitive scores based on APOE-ε4 status. NRP1 regulates angiogenesis, and literature suggests vessels in APOE-ε4 brains are more prone to leaking, perhaps placing young vessels at risk for ischemia. Results suggest that future therapeutics targeting brain angiogenesis should also consider ε4 allele status.


Asunto(s)
Envejecimiento/genética , Apolipoproteína E4/genética , Envejecimiento Cognitivo , Disfunción Cognitiva/genética , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Factor A de Crecimiento Endotelial Vascular/genética , Anciano , Anciano de 80 o más Años , Femenino , Genotipo , Humanos , Masculino , Neovascularización Fisiológica/genética , Neuropilina-1/genética , Neuropilina-1/fisiología
6.
Curr Genet Med Rep ; 7(1): 13-21, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31360619

RESUMEN

PURPOSE OF REVIEW: Summarize sex-specific contributors to the genetic architecture of Alzheimer's disease (AD). RECENT FINDINGS: There are sex differences in the effects of Apolipoprotein E (APOE), genes along the APOE pathway, and genes along the neurotrophic signaling pathway in predicting AD. Reported sex differences are largely driven by stronger associations among females. Evidence also suggests that genetic predictors of amyloidosis are largely shared across sexes, while sex-specific genetic effects emerge downstream of amyloidosis and drive the clinical manifestation of AD. SUMMARY: There is a lack of comprehensive assessments of sex differences in genome-wide analyses of AD and a need for more systematic reporting a sex-stratified genetic effects. The emerging emphasis on sex as a biological variable provides an opportunity for transdisciplinary collaborations aimed at addressing major analytical challenges that have hampered advancements in the field. Ultimately, sex-specific genetic association studies represent a logical first step towards precision medicine.

7.
J Neurosci ; 38(31): 6825-6840, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29934347

RESUMEN

The C terminus of HSC70-interacting protein (CHIP, STUB1) is a ubiquitously expressed cytosolic E3-ubiquitin ligase. CHIP-deficient mice exhibit cardiovascular stress and motor dysfunction before premature death. This phenotype is more consistent with animal models in which master regulators of autophagy are affected rather than with the mild phenotype of classic E3-ubiquitin ligase mutants. The cellular and biochemical events that contribute to neurodegeneration and premature aging in CHIP KO models remain poorly understood. Electron and fluorescent microscopy demonstrates that CHIP deficiency is associated with greater numbers of mitochondria, but these organelles are swollen and misshapen. Acute bioenergetic stress triggers CHIP induction and relocalization to mitochondria, where it plays a role in the removal of damaged organelles. This mitochondrial clearance is required for protection following low-level bioenergetic stress in neurons. CHIP expression overlaps with stabilization of the redox stress sensor PTEN-inducible kinase 1 (PINK1) and is associated with increased LC3-mediated mitophagy. Introducing human promoter-driven vectors with mutations in either the E3 ligase or tetracopeptide repeat domains of CHIP in primary neurons derived from CHIP-null animals enhances CHIP accumulation at mitochondria. Exposure to autophagy inhibitors suggests that the increase in mitochondrial CHIP is likely due to diminished clearance of these CHIP-tagged organelles. Proteomic analysis of WT and CHIP KO mouse brains (four male, four female per genotype) reveals proteins essential for maintaining energetic, redox, and mitochondrial homeostasis undergo significant genotype-dependent expression changes. Together, these data support the use of CHIP-deficient animals as a predictive model of age-related degeneration with selective neuronal proteotoxicity and mitochondrial failure.SIGNIFICANCE STATEMENT Mitochondria are recognized as central determinants of neuronal function and survival. We demonstrate that C terminus of HSC70-Interacting Protein (CHIP) is critical for neuronal responses to stress. CHIP upregulation and localization to mitochondria is required for mitochondrial autophagy (mitophagy). Unlike other disease-associated E3 ligases such as Parkin and Mahogunin, CHIP controls homeostatic and stress-induced removal of mitochondria. Although CHIP deletion results in greater numbers of mitochondria, these organelles have distorted inner membranes without clear cristae. Neuronal cultures derived from animals lacking CHIP are more vulnerable to acute injuries and transient loss of CHIP renders neurons incapable of mounting a protective response after low-level stress. Together, these data suggest that CHIP is an essential regulator of mitochondrial number, cell signaling, and survival.


Asunto(s)
Envejecimiento/fisiología , Precondicionamiento Isquémico , Mitofagia/fisiología , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Células Cultivadas , Femenino , Homeostasis , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/ultraestructura , Estrés Oxidativo , Regiones Promotoras Genéticas/genética , Prosencéfalo/citología , Dominios Proteicos , Proteínas Quinasas/biosíntesis , Proteínas Quinasas/genética , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...