Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 34(49): 16385-96, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25471576

RESUMEN

The sleep-promoting ventrolateral preoptic nucleus (VLPO) shares reciprocal inhibitory inputs with wake-active neuronal nuclei, including the locus ceruleus. Electrophysiologically, sleep-promoting neurons in the VLPO are directly depolarized by the general anesthetic isoflurane and hyperpolarized by norepinephrine, a wake-promoting neurotransmitter. However, the integration of these competing influences on the VLPO, a sleep- and anesthetic-active structure, has yet to be evaluated in either brain slices in vitro or the intact organism. Single-cell multiplex RT-PCR conducted on both isoflurane-activated, putative sleep-promoting VLPO neurons and neighboring, state-indifferent VLPO neurons in mouse brain slices revealed widespread expression of α2A-, α2B- and α2C-adrenergic receptors in both populations. Indeed, both norepinephrine and the highly selective α2 agonist dexmedetomidine each reversed the VLPO depolarization induced by isoflurane in slices in vitro. When microinjected directly into the VLPO of a mouse lightly anesthetized with isoflurane, dexmedetomidine increased behavioral arousal and reduced the depressant effects of isoflurane on barrel cortex somatosensory-evoked potentials but failed to elicit spectral changes in spontaneous EEG. Based on these observations, we conclude that local modulation of α-adrenergic activity in the VLPO destabilizes, but does not fully antagonize, the anesthetic state, thus priming the brain for anesthetic emergence.


Asunto(s)
Nivel de Alerta/efectos de los fármacos , Isoflurano/antagonistas & inhibidores , Área Preóptica/fisiología , Receptores Adrenérgicos alfa 2/fisiología , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Anestésicos/farmacología , Animales , Ondas Encefálicas/efectos de los fármacos , Dexmedetomidina/administración & dosificación , Dexmedetomidina/farmacología , Electroencefalografía , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Potenciales Evocados Somatosensoriales/fisiología , Isoflurano/farmacología , Masculino , Ratones , Microinyecciones , Norepinefrina/farmacología , Área Preóptica/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo
2.
J Vis Exp ; (80): e51079, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24192721

RESUMEN

One desirable endpoint of general anesthesia is the state of unconsciousness, also known as hypnosis. Defining the hypnotic state in animals is less straightforward than it is in human patients. A widely used behavioral surrogate for hypnosis in rodents is the loss of righting reflex (LORR), or the point at which the animal no longer responds to their innate instinct to avoid the vulnerability of dorsal recumbency. We have developed a system to assess LORR in 24 mice simultaneously while carefully controlling for potential confounds, including temperature fluctuations and varying gas flows. These chambers permit reliable assessment of anesthetic sensitivity as measured by latency to return of the righting reflex (RORR) following a fixed anesthetic exposure. Alternatively, using stepwise increases (or decreases) in anesthetic concentration, the chambers also enable determination of a population's sensitivity to induction (or emergence) as measured by EC50 and Hill slope. Finally, the controlled environmental chambers described here can be adapted for a variety of alternative uses, including inhaled delivery of other drugs, toxicology studies, and simultaneous real-time monitoring of vital signs.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Sistemas de Liberación de Medicamentos/instrumentación , Reflejo de Enderezamiento/efectos de los fármacos , Animales , Sistemas de Liberación de Medicamentos/métodos , Ratones , Microinyecciones , Técnicas Estereotáxicas
3.
Curr Biol ; 22(21): 2008-16, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23103189

RESUMEN

BACKGROUND: Despite seventeen decades of continuous clinical use, the neuronal mechanisms through which volatile anesthetics act to produce unconsciousness remain obscure. One emerging possibility is that anesthetics exert their hypnotic effects by hijacking endogenous arousal circuits. A key sleep-promoting component of this circuitry is the ventrolateral preoptic nucleus (VLPO), a hypothalamic region containing both state-independent neurons and neurons that preferentially fire during natural sleep. RESULTS: Using c-Fos immunohistochemistry as a biomarker for antecedent neuronal activity, we show that isoflurane and halothane increase the number of active neurons in the VLPO, but only when mice are sedated or unconscious. Destroying VLPO neurons produces an acute resistance to isoflurane-induced hypnosis. Electrophysiological studies prove that the neurons depolarized by isoflurane belong to the subpopulation of VLPO neurons responsible for promoting natural sleep, whereas neighboring non-sleep-active VLPO neurons are unaffected by isoflurane. Finally, we show that this anesthetic-induced depolarization is not solely due to a presynaptic inhibition of wake-active neurons as previously hypothesized but rather is due to a direct postsynaptic effect on VLPO neurons themselves arising from the closing of a background potassium conductance. CONCLUSIONS: Cumulatively, this work demonstrates that anesthetics are capable of directly activating endogenous sleep-promoting networks and that such actions contribute to their hypnotic properties.


Asunto(s)
Anestésicos/farmacología , Halotano/farmacología , Hipnosis Anestésica , Isoflurano/farmacología , Neuronas/efectos de los fármacos , Área Preóptica/efectos de los fármacos , Anestésicos/administración & dosificación , Animales , Hipnóticos y Sedantes , Ratones , Neuronas/fisiología , Potasio/metabolismo , Área Preóptica/fisiología , Proteínas Proto-Oncogénicas c-fos/química , Sueño/efectos de los fármacos , Sueño/fisiología , Inconsciencia
4.
J Pharmacol Exp Ther ; 341(3): 735-42, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22414854

RESUMEN

Hydrogen sulfide (H(2)S) depresses mitochondrial function and thereby metabolic rates in mice, purportedly resulting in a state of "suspended animation." Volatile anesthetics also depress mitochondrial function, an effect that may contribute to their anesthetic properties. In this study, we ask whether H(2)S has general anesthetic properties, and by extension, whether mitochondrial effects underlie the state of anesthesia. We compared loss of righting reflex, electroencephalography, and electromyography in mice exposed to metabolically equipotent concentrations of halothane, isoflurane, sevoflurane, and H(2)S. We also studied combinations of H(2)S and anesthetics to assess additivity. Finally, the long-term effects of H(2)S were assessed by using the Morris water maze behavioral testing 2 to 3 weeks after exposures. Exposure to H(2)S decreases O(2) consumption, CO(2) production, and body temperature similarly to that of the general anesthetics, but fails to produce a loss of righting reflex or muscle atonia at metabolically equivalent concentrations. When combined, H(2)S antagonizes the metabolic effects of isoflurane, but potentiates the isoflurane-induced loss of righting reflex. We found no effect of prior H(2)S exposure on memory or learning. H(2)S (250 ppm), not itself lethal, produced delayed lethality when combined with subanesthetic concentrations of isoflurane. H(2)S cannot be considered a general anesthetic, despite similar metabolic suppression. Metabolic suppression, presumably via mitochondrial actions, is not sufficient to account for the hypnotic or immobilizing components of the anesthetic state. Combinations of H(2)S and isoflurane can be lethal, suggesting extreme care in the combination of these gases in clinical situations.


Asunto(s)
Anestesia General/métodos , Anestésicos Generales/farmacología , Sulfuro de Hidrógeno/farmacología , Actividad Motora/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Reflejo de Enderezamiento/efectos de los fármacos , Anestésicos por Inhalación/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Temperatura Corporal , Dióxido de Carbono/metabolismo , Caspasa 3/metabolismo , Interacciones Farmacológicas , Electroencefalografía , Electromiografía , Halotano/administración & dosificación , Isoflurano/administración & dosificación , Isoflurano/antagonistas & inhibidores , Masculino , Éteres Metílicos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Oxígeno/metabolismo , Sevoflurano
5.
Anesthesiology ; 115(4): 702-12, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21934405

RESUMEN

BACKGROUND: General anesthesia has been likened to a state in which anesthetized subjects are locked out of access to both rapid eye movement (REM) sleep and wakefulness. Were this true for all anesthetics, a significant REM rebound after anesthetic exposure might be expected. However, for the intravenous anesthetic propofol, studies demonstrate that no sleep debt accrues. Moreover, preexisting sleep debts dissipate during propofol anesthesia. To determine whether these effects are specific to propofol or are typical of volatile anesthetics, the authors tested the hypothesis that REM sleep debt would accrue in rodents anesthetized with volatile anesthetics. METHODS: Electroencephalographic and electromyographic electrodes were implanted in 10 mice. After 9-11 days of recovery and habituation to a 12 h:12 h light-dark cycle, baseline states of wakefulness, nonrapid eye movement sleep, and REM sleep were recorded in mice exposed to 6 h of an oxygen control and on separate days to 6 h of isoflurane, sevoflurane, or halothane in oxygen. All exposures were conducted at the onset of light. RESULTS: Mice in all three anesthetized groups exhibited a significant doubling of REM sleep during the first 6 h of the dark phase of the circadian schedule, whereas only mice exposed to halothane displayed a significant increase in nonrapid eye movement sleep that peaked at 152% of baseline. CONCLUSION: REM sleep rebound after exposure to volatile anesthetics suggests that these volatile anesthetics do not fully substitute for natural sleep. This result contrasts with the published actions of propofol for which no REM sleep rebound occurred.


Asunto(s)
Anestésicos por Inhalación/farmacología , Privación de Sueño/inducido químicamente , Sueño REM/efectos de los fármacos , Anestesia por Inhalación , Anestésicos Intravenosos/farmacología , Animales , Electrodos Implantados , Electroencefalografía/efectos de los fármacos , Electromiografía/efectos de los fármacos , Halotano/farmacología , Isoflurano/farmacología , Masculino , Éteres Metílicos/farmacología , Ratones , Ratones Endogámicos C57BL , Polisomnografía/efectos de los fármacos , Propofol/farmacología , Sevoflurano , Sueño/efectos de los fármacos , Privación de Sueño/fisiopatología
6.
PLoS One ; 5(7): e11903, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20689589

RESUMEN

One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states.


Asunto(s)
Anestésicos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Inconsciencia/inducido químicamente , Vigilia/efectos de los fármacos , Animales , Sistema Nervioso Central/efectos de los fármacos , Drosophila , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Proc Natl Acad Sci U S A ; 105(4): 1309-14, 2008 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-18195361

RESUMEN

The neural mechanisms through which the state of anesthesia arises and dissipates remain unknown. One common belief is that emergence from anesthesia is the inverse process of induction, brought about by elimination of anesthetic drugs from their CNS site(s) of action. Anesthetic-induced unconsciousness may result from specific interactions of anesthetics with the neural circuits regulating sleep and wakefulness. Orexinergic agonists and antagonists have the potential to alter the stability of the anesthetized state. In this report, we refine the role of the endogenous orexin system in impacting emergence from, but not entry into the anesthetized state, and in doing so, we distinguish mechanisms of induction from those of emergence. We demonstrate that isoflurane and sevoflurane, two commonly used general anesthetics, inhibit c-Fos expression in orexinergic but not adjacent melanin-concentrating hormone (MCH) neurons; suggesting that wake-active orexinergic neurons are inhibited by these anesthetics. Genetic ablation of orexinergic neurons, which causes acquired murine narcolepsy, delays emergence from anesthesia, without changing anesthetic induction. Pharmacologic studies with a selective orexin-1 receptor antagonist confirm a specific orexin effect on anesthetic emergence without an associated change in induction. We conclude that there are important differences in the neural substrates mediating induction and emergence. These findings support the concept that emergence depends, in part, on recruitment and stabilization of wake-active regions of brain.


Asunto(s)
Anestesia General , Anestésicos por Inhalación , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuropéptidos/fisiología , Anestesia General/efectos adversos , Animales , Femenino , Péptidos y Proteínas de Señalización Intracelular/agonistas , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Isoflurano , Masculino , Éteres Metílicos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/agonistas , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/genética , Orexinas , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sevoflurano , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
9.
J Acoust Soc Am ; 117(6): 3944-51, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16018496

RESUMEN

The purpose of these experiments was to determine whether detecting brief decrements in noise level ("gaps") varies with the spectral content and bandwidth of noise in mice as it does in humans. The behavioral effect of gaps was quantified by their inhibiting a subsequent acoustic startle reflex. Gap durations from 1 to 29 ms were presented in five adjacent 1-octave noise bands and one 5-octave band, their range being 2 kHz to 64 kHz. Gaps ended 60 ms before the startle stimulus (experiment 1) or at startle onset (experiment 2). Asymptotic inhibition was greater for higher-frequency 1-octave bands and highest for the 5-octave band in both experiments, but time constants were related to frequency only in experiment 1. For the lowest band (2-4 kHz) neither noise decrements (experiment 1 and 2) nor increments (experiment 3) had any behavioral consequence, but this band was effective when presented as a pulse in quiet (experiment 4). The lowest frequencies in the most effective 1-octave band were one octave above the spectral region where mice have their best absolute thresholds. These effects are similar to those obtained in humans, and reveal a special contribution of wide band, high-frequency stimulation to temporal acuity.


Asunto(s)
Nivel de Alerta , Conducta Animal , Habituación Psicofisiológica , Inhibición Psicológica , Ratones Endogámicos CBA , Ruido , Reflejo Acústico , Espectrografía del Sonido , Animales , Umbral Auditivo , Femenino , Masculino , Ratones , Reflejo de Sobresalto , Percepción del Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...