Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Animals (Basel) ; 14(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731268

RESUMEN

In 1992, an evolutionary model for the endogenous regulation of parasite-defense grooming was first proposed for African antelope by Ben and Lynette Hart. Known as the programmed grooming model, it hypothesized that a central control mechanism periodically evokes grooming so as to remove ectoparasites before they blood feed. The programmed grooming model contrasts with a stimulus-driven mechanism, in which grooming is stimulated by direct peripheral irritation from ectoparasite bites. In the 30+ years since the seminal 1992 paper, 26 studies have provided robust support for the programmed grooming model in ungulate hosts and ticks. In addition, multiple studies from unaffiliated investigators have evaluated the predictions of the model in different host systems (including rodents and primates) and in a variety of other ectoparasites (fleas, lice, and keds). I conducted a tricennial review of these studies to assess the current evidence and arrived at the following three conclusions: (1) tests of the programmed grooming predictions should use a similar methodology to the well-established protocol, so that the results are comparable and can be properly assessed; (2) the predictions used to test the model should be tailored to the biology of the host taxa under investigation; and (3) the predictions should likewise be tailored to the biology of the ectoparasites involved, bearing in mind that grooming has varying degrees of effectiveness, depending on the parasite. Further research is warranted to enhance our understanding of the role of grooming in maintaining the health of wild animals in the face of parasite attacks.

2.
Sci Rep ; 14(1): 2395, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287072

RESUMEN

Recently, the tiger-cat species complex was split into Leopardus tigrinus and Leopardus guttulus, along with other proposed schemes. We performed a detailed analysis integrating ecological modeling, biogeography, and phenotype of the four originally recognized subspecies-tigrinus, oncilla, pardinoides, guttulus-and presented a new multidimensional niche depiction of the species. Species distribution models used > 1400 records from museums and photographs, all checked for species accuracy. Morphological data were obtained from institutional/personal archives. Spotting patterns were established by integrating museum and photographic/camera-trap records. Principal component analysis showed three clearly distinct groups, with the Central American specimens (oncilla) clustering entirely within those of the Andes, namely the pardinoides group of the cloud forests of the southern Central-American and Andean mountain chains (clouded tiger-cat); the tigrinus group of the savannas of the Guiana Shield and central/northeastern Brazil (savanna tiger-cat); and the guttulus group in the lowland forests of the Atlantic Forest domain (Atlantic Forest tiger-cat). This scheme is supported by recent genetic analyses. All species displayed different spotting patterns, with some significant differences in body measurements/proportions. The new distribution presented alarming reductions from the historic range of - 50.4% to - 68.2%. This multidimensional approach revealed a new species of the elusive and threatened tiger-cat complex.


Asunto(s)
Tigres , Animales , Filogenia , Bosques , Brasil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...