Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioact Mater ; 28: 155-166, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37250865

RESUMEN

The microstructural architecture of remodeled bone in the peri-implant region of screw implants plays a vital role in the distribution of strain energy and implant stability. We present a study in which screw implants made from titanium, polyetheretherketone and biodegradable magnesium-gadolinium alloys were implanted into rat tibia and subjected to a push-out test four, eight and twelve weeks after implantation. Screws were 4 mm in length and with an M2 thread. The loading experiment was accompanied by simultaneous three-dimensional imaging using synchrotron-radiation microcomputed tomography at 5 µm resolution. Bone deformation and strains were tracked by applying optical flow-based digital volume correlation to the recorded image sequences. Implant stabilities measured for screws of biodegradable alloys were comparable to pins whereas non-degradable biomaterials experienced additional mechanical stabilization. Peri-implant bone morphology and strain transfer from the loaded implant site depended heavily on the biomaterial utilized. Titanium implants stimulated rapid callus formation displaying a consistent monomodal strain profile whereas the bone volume fraction in the vicinity of magnesium-gadolinium alloys exhibited a minimum close to the interface of the implant and less ordered strain transfer. Correlations in our data suggest that implant stability benefits from disparate bone morphological properties depending on the biomaterial utilized. This leaves the choice of biomaterial as situational depending on local tissue properties.

2.
Sci Rep ; 13(1): 6996, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117518

RESUMEN

Phase-contrast computed tomography can visualize soft tissue samples with high contrast. At coherent sources, propagation-based imaging (PBI) techniques are among the most common, as they are easy to implement and produce high-resolution images. Their downside is a low degree of quantitative data due to simplifying assumptions of the sample properties in the reconstruction. These assumptions can be avoided, by using quantitative phase-contrast techniques as an alternative. However, these often compromise spatial resolution and require complicated setups. In order to overcome this limitation, we designed and constructed a new imaging setup using a 2D Talbot array illuminator as a wavefront marker and speckle-based imaging phase-retrieval techniques. We developed a post-processing chain that can compensate for wavefront marker drifts and that improves the overall sensitivity. By comparing two measurements of biomedical samples, we demonstrate that the spatial resolution of our setup is comparable to the one of PBI scans while being able to successfully image a sample that breaks the typical homogeneity assumption used in PBI.


Asunto(s)
Interpretación de Imagen Radiográfica Asistida por Computador , Tomografía Computarizada por Rayos X , Rayos X , Tomografía Computarizada por Rayos X/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Microscopía de Contraste de Fase
3.
Regen Biomater ; 10: rbac077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683753

RESUMEN

Magnesium (Mg)-based implants are highly attractive for the orthopedic field and may replace titanium (Ti) as support for fracture healing. To determine the implant-bone interaction in different bony regions, we implanted Mg-based alloy ZX00 (Mg < 0.5 Zn < 0.5 Ca, in wt%) and Ti-screws into the distal epiphysis and distal metaphysis of sheep tibiae. The implant degradation and osseointegration were assessed in vivo and ex vivo after 4, 6 and 12 weeks, using a combination of clinical computed tomography, medium-resolution micro computed tomography (µCT) and high-resolution synchrotron radiation µCT (SRµCT). Implant volume loss, gas formation and bone growth were evaluated for both implantation sites and each bone region independently. Additionally, histological analysis of bone growth was performed on embedded hard-tissue samples. We demonstrate that in all cases, the degradation rate of ZX00-implants ranges between 0.23 and 0.75 mm/year. The highest degradation rates were found in the epiphysis. Bone-to-implant contact varied between the time points and bone types for both materials. Mostly, bone-volume-to-total-volume was higher around Ti-implants. However, we found an increased cortical thickness around the ZX00-screws when compared with the Ti-screws. Our results showed the suitability of ZX00-screws for implantation into the distal meta- and epiphysis.

4.
J Med Imaging (Bellingham) ; 9(3): 031505, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35310450

RESUMEN

Purpose: Dental calculus forms on teeth during the life of an individual and its investigation can yield information about diet, health status, and environmental pollution. Currently, the analytical techniques used to visualize the internal structure of human dental calculus and entrapped inclusions are limited and require destructive sampling, which cannot always be justified. Approach: We used propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SR- µ CT ) to non-destructively examine the internal organization of dental calculus, including its microstructure and entrapped inclusions, on both modern and archeological samples. Results: The virtual histological exploration of the samples shows that PPC-SR- µ CT is a powerful approach to visualize the internal organization of dental calculus. We identified several important features, including previously undetected negative imprints of enamel and dentine growth markers (perikymata and periradicular bands, respectively), the non-contiguous structure of calculus layers with multiple voids, and entrapped plant remains. Conclusions: PPC-SR- µ CT is an effective technique to explore dental calculus structural organization, and is especially powerful for enabling the identification of inclusions. The non-destructive nature of synchrotron tomography helps protect samples for future research. However, the irregular layers and frequent voids reveal a high heterogeneity and variability within calculus, with implications for research focusing on inclusions.

5.
Bioact Mater ; 13: 37-52, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35224290

RESUMEN

Biodegradable magnesium (Mg) alloys can revolutionize osteosynthesis, because they have mechanical properties similar to those of the bone, and degrade over time, avoiding the need of removal surgery. However, they are not yet routinely applied because their degradation behavior is not fully understood. In this study we have investigated and quantified the degradation and osseointegration behavior of two biodegradable Mg alloys based on gadolinium (Gd) at high resolution. Mg-5Gd and Mg-10Gd screws were inserted in rat tibia for 4, 8 and 12 weeks. Afterward, the degradation rate and degradation homogeneity, as well as bone-to-implant interface, were studied with synchrotron radiation micro computed tomography and histology. Titanium (Ti) and polyether ether ketone (PEEK) were used as controls material to evaluate osseointegration. Our results showed that Mg-5Gd degraded faster and less homogeneously than Mg-10Gd. Both alloys gradually form a stable degradation layer at the interface and were surrounded by new bone tissue. The results were correlated to in vitro data obtained from the same material and shape. The average bone-to-implant contact of the Mg-xGd implants was comparable to that of Ti and higher than for PEEK. The results suggest that both Mg-xGd alloys are suitable as materials for bone implants.

6.
Cells ; 12(1)2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36611969

RESUMEN

BACKGROUND: High-dose-rate radiotherapy has shown promising results with respect to normal tissue preservation. We developed an ex vivo model to study the physiological effects of experimental radiotherapy in the rodent esophageal smooth muscle. METHODS: We assessed the physiological parameters of the esophageal function in ex vivo preparations of the proximal, middle, and distal segments in the organ bath. High-dose-rate synchrotron irradiation was conducted using both the microbeam irradiation (MBI) technique with peak doses greater than 200 Gy and broadbeam irradiation (BBI) with doses ranging between 3.5-4 Gy. RESULTS: Neither MBI nor BBI affected the function of the contractile apparatus. While peak latency and maximal force change were not affected in the BBI group, and no changes were seen in the proximal esophagus segments after MBI, a significant increase in peak latency and a decrease in maximal force change was observed in the middle and distal esophageal segments. CONCLUSION: No severe changes in physiological parameters of esophageal contraction were determined after high-dose-rate radiotherapy in our model, but our results indicate a delayed esophageal function. From the clinical perspective, the observed increase in peak latency and decreased maximal force change may indicate delayed esophageal transit.


Asunto(s)
Esófago , Roedores , Animales , Contracción Muscular/fisiología , Músculo Liso
7.
Sci Rep ; 11(1): 24237, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930947

RESUMEN

Highly accurate segmentation of large 3D volumes is a demanding task. Challenging applications like the segmentation of synchrotron radiation microtomograms (SRµCT) at high-resolution, which suffer from low contrast, high spatial variability and measurement artifacts, readily exceed the capacities of conventional segmentation methods, including the manual segmentation by human experts. The quantitative characterization of the osseointegration and spatio-temporal biodegradation process of bone implants requires reliable, and very precise segmentation. We investigated the scaling of 2D U-net for high resolution grayscale volumes by three crucial model hyper-parameters (i.e., the model width, depth, and input size). To leverage the 3D information of high-resolution SRµCT, common three axes prediction fusing is extended, investigating the effect of adding more than three axes prediction. In a systematic evaluation we compare the performance of scaling the U-net by intersection over union (IoU) and quantitative measurements of osseointegration and degradation parameters. Overall, we observe that a compound scaling of the U-net and multi-axes prediction fusing with soft voting yields the highest IoU for the class "degradation layer". Finally, the quantitative analysis showed that the parameters calculated with model segmentation deviated less from the high quality results than those obtained by a semi-automatic segmentation method.


Asunto(s)
Biodegradación Ambiental , Sincrotrones , Microtomografía por Rayos X/métodos , Artefactos , Aprendizaje Profundo , Reacciones Falso Positivas , Humanos , Procesamiento de Imagen Asistido por Computador , Ciencia de los Materiales , Redes Neurales de la Computación , Oseointegración , Prótesis e Implantes , Reproducibilidad de los Resultados
8.
Sci Rep ; 11(1): 20272, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642393

RESUMEN

Tetrapodal zinc oxide (t-ZnO) is used to fabricate polymer composites for many different applications ranging from biomedicine to electronics. In recent times, macroscopic framework structures from t-ZnO have been used as a versatile sacrificial template for the synthesis of multi-scaled foam structures from different nanomaterials such as graphene, hexagonal boron nitride or gallium nitride. Many of these fabrication methods rely on wet-chemical coating processes using nanomaterial dispersions, leading to a strong interest in the actual coating mechanism and factors influencing it. Depending on the type of medium (e.g. solvent) used, different results regarding the homogeneity of the nanomaterial coating can be achieved. In order to understand how a medium influences the coating behavior, the evaporation process of water and ethanol is investigated in this work using in situ synchrotron radiation-based micro computed tomography (SRµCT). By employing propagation-based phase contrast imaging, both the t-ZnO network and the medium can be visualized. Thus, the evaporation process can be monitored non-destructively in three dimensions. This investigation showed that using a polar medium such as water leads to uniform evaporation and, by that, a homogeneous coating of the entire network.

9.
Acta Biomater ; 136: 582-591, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34601107

RESUMEN

Extensive research is being conducted on magnesium (Mg) alloys for bone implant manufacturing, due to their biocompatibility, biodegradability and mechanical properties. Gadolinium (Gd) is among the most promising alloying elements for property control in Mg alloy implants; however, its toxicity is controversial. Investigating Gd behavior during implant corrosion is thus of utmost importance. In this study, we analyzed the degradation byproducts at the implant site of biodegradable Mg-5Gd and Mg-10Gd implants after 12 weeks healing time, using a combination of different imaging techniques: histology, energy-dispersive x-ray spectroscopy (EDX), x-ray microcomputed tomography (µCT) and neutron µCT. The main finding has been that, at the healing time in exam, the corrosion appears to have involved only the Mg component, which has been substituted by calcium and phosphorus, while the Gd remains localized at the implant site. This was observed in 2D by means of EDX maps and extended to 3D with a novel application of neutron tomography. X-ray fluorescence analysis of the main excretory organs also did not reveal any measurable accumulation of Gd, further reinforcing the conclusion that very limited or no removal at all of Gd-alloy happened during degradation. STATEMENT OF SIGNIFICANCE: Gadolinium is among the most promising alloying elements for property control in biodegradable magnesium alloy implants, but its toxicity is controversial and its behavior during corrosion needs to be investigated. We combine 2D energy dispersive x-ray spectroscopy and 3D neutron and x-ray tomography to image the degradation of magnesium-gadolinium implants after 12 weeks of healing time. We find that, at the time in exam, the corrosion has involved only the magnesium component, while the gadolinium remains localized at the implant site. X-ray fluorescence analysis of the main excretory organs also does not reveal any measurable accumulation of Gd, further reinforcing the conclusion that very limited or no removal at all of Gd-alloy has happened during degradation.


Asunto(s)
Gadolinio , Magnesio , Implantes Absorbibles , Aleaciones , Tornillos Óseos , Corrosión , Magnesio/farmacología , Ensayo de Materiales , Microtomografía por Rayos X
10.
Development ; 148(18)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33674259

RESUMEN

During Xenopus gastrulation, leading edge mesendoderm (LEM) advances animally as a wedge-shaped cell mass over the vegetally moving blastocoel roof (BCR). We show that close contact across the BCR-LEM interface correlates with attenuated net advance of the LEM, which is pulled forward by tip cells while the remaining LEM frequently separates from the BCR. Nevertheless, lamellipodia persist on the detached LEM surface. They attach to adjacent LEM cells and depend on PDGF-A, cell-surface fibronectin and cadherin. We argue that active cell motility on the LEM surface prevents adverse capillary effects in the liquid LEM tissue as it moves by being pulled. It counters tissue surface-tension effects with oriented cell movement and bulges the LEM surface out to keep it close to the curved BCR without attaching to it. Proximity to the BCR is necessary, in turn, for the maintenance and orientation of lamellipodia that permit mass cell movement with minimal substratum contact. Together with a similar process in epithelial invagination, vertical telescoping, the cell movement at the LEM surface defines a novel type of cell rearrangement: vertical shearing.


Asunto(s)
Movimiento Celular/fisiología , Gastrulación/fisiología , Mesodermo/fisiología , Xenopus laevis/fisiología , Animales , Cadherinas/metabolismo , Acción Capilar , Adhesión Celular/fisiología , Endodermo/metabolismo , Endodermo/fisiología , Fibronectinas/metabolismo , Gástrula/metabolismo , Gástrula/fisiología , Mesodermo/metabolismo , Seudópodos/metabolismo , Seudópodos/fisiología , Xenopus laevis/metabolismo
11.
Optica ; 8(12): 1588-1595, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37829605

RESUMEN

Two-dimensional (2D) Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10-20 keV. The TAIs create intensity modulations with a high compression ratio on the micrometer scale at short propagation distances. Their performance was compared with various other wavefront markers in terms of period, visibility, flux efficiency, and flexibility to be adapted for limited beam coherence and detector resolution. Differential x-ray phase contrast and dark-field imaging were demonstrated with a one-dimensional, linear phase stepping approach yielding 2D phase sensitivity using unified modulated pattern analysis (UMPA) for phase retrieval. The method was employed for x-ray phase computed tomography reaching a resolution of 3 µm on an unstained murine artery. It opens new possibilities for three-dimensional, non-destructive, and quantitative imaging of soft matter such as virtual histology. The phase modulators can also be used for various other x-ray applications such as dynamic phase imaging, super-resolution structured illumination microscopy, or wavefront sensing.

12.
J Struct Biol ; 213(1): 107658, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33207268

RESUMEN

Mammalian teeth have to sustain repetitive and high chewing loads without failure. Key to this capability is the periodontal ligament (PDL), a connective tissue containing a collagenous fibre network which connects the tooth roots to the alveolar bone socket and which allows the teeth to move when loaded. It has been suggested that rodent molars under load experience a screw-like downward motion but it remains unclear whether this movement also occurs in primates. Here we use synchroton micro-computed tomography paired with an axial loading setup to investigate the form-function relationship between tooth movement and the morphology of the PDL space in a non-human primate, the mouse lemur (Microcebus murinus). The loading behavior of both mandibular and maxillary molars showed a three-dimensional movement with translational and rotational components, which pushes the tooth into the alveolar socket. Moreover, we found a non-uniform PDL thickness distribution and a gradual increase in volumetric proportion of the periodontal vasculature from cervical to apical. Our results suggest that the PDL morphology may optimize the three-dimensional tooth movement to avoid high stresses under loading.


Asunto(s)
Diente Molar/fisiología , Primates/fisiología , Animales , Femenino , Humanos , Imagenología Tridimensional/métodos , Ratones , Ligamento Periodontal/fisiología , Estrés Mecánico , Sincrotrones , Técnicas de Movimiento Dental/métodos , Microtomografía por Rayos X/métodos
13.
Opt Express ; 24(4): 4331-48, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26907079

RESUMEN

The interactions of a beam of hard and spatio-temporally coherent X-rays with a soft-matter sample primarily induce a transverse distribution of exit phase variations δϕ (retardations or advancements in pieces of the wave front exiting the object compared to the incoming wave front) whose free-space propagation over a distance z gives rise to intensity contrast gz. For single-distance image detection and |δϕ| ≪ 1 all-order-in-z phase-intensity contrast transfer is linear in δϕ. Here we show that ideal coherence implies a decay of the (shot-)noise-to-signal ratio in gz and of the associated phase noise as z(-1/2) and z(-1), respectively. Limits on X-ray dose thus favor large values of z. We discuss how a phase-scaling symmetry, exact in the limit δϕ → 0 and dynamically unbroken up to |δϕ| ∼ 1, suggests a filtering of gz in Fourier space, preserving non-iterative quasi-linear phase retrieval for phase variations up to order unity if induced by multi-scale objects inducing phase variations δϕ of a broad spatial frequency spectrum. Such an approach continues to be applicable under an assumed phase-attenuation duality. Using synchrotron radiation, ex and in vivo microtomography on frog embryos exemplifies improved resolution compared to a conventional single-distance phase-retrieval algorithm.

14.
Opt Express ; 23(5): 5368-87, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836772

RESUMEN

High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.

15.
Nat Protoc ; 9(2): 294-304, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24407356

RESUMEN

X-ray phase-contrast microtomography (XPCµT) is a label-free, high-resolution imaging modality for analyzing early development of vertebrate embryos in vivo by using time-lapse sequences of 3D volumes. Here we provide a detailed protocol for applying this technique to study gastrulation in Xenopus laevis (African clawed frog) embryos. In contrast to µMRI, XPCµT images optically opaque embryos with subminute temporal and micrometer-range spatial resolution. We describe sample preparation, culture and suspension of embryos, tomographic imaging with a typical duration of 2 h (gastrulation and neurulation stages), intricacies of image pre-processing, phase retrieval, tomographic reconstruction, segmentation and motion analysis. Moreover, we briefly discuss our present understanding of X-ray dose effects (heat load and radiolysis), and we outline how to optimize the experimental configuration with respect to X-ray energy, photon flux density, sample-detector distance, exposure time per tomographic projection, numbers of projections and time-lapse intervals. The protocol requires an interdisciplinary effort of developmental biologists for sample preparation and data interpretation, X-ray physicists for planning and performing the experiment and applied mathematicians/computer scientists/physicists for data processing and analysis. Sample preparation requires 9-48 h, depending on the stage of development to be studied. Data acquisition takes 2-3 h per tomographic time-lapse sequence. Data processing and analysis requires a further 2 weeks, depending on the availability of computing power and the amount of detail required to address a given scientific problem.


Asunto(s)
Gástrula/ultraestructura , Gastrulación/fisiología , Microscopía de Contraste de Fase/métodos , Imagen de Lapso de Tiempo/métodos , Microtomografía por Rayos X/métodos , Xenopus laevis/embriología , Animales , Gástrula/fisiología , Imagenología Tridimensional
16.
Nature ; 497(7449): 374-7, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23676755

RESUMEN

An ambitious goal in biology is to understand the behaviour of cells during development by imaging-in vivo and with subcellular resolution-changes of the embryonic structure. Important morphogenetic movements occur throughout embryogenesis, but in particular during gastrulation when a series of dramatic, coordinated cell movements drives the reorganization of a simple ball or sheet of cells into a complex multi-layered organism. In Xenopus laevis, the South African clawed frog and also in zebrafish, cell and tissue movements have been studied in explants, in fixed embryos, in vivo using fluorescence microscopy or microscopic magnetic resonance imaging. None of these methods allows cell behaviours to be observed with micrometre-scale resolution throughout the optically opaque, living embryo over developmental time. Here we use non-invasive in vivo, time-lapse X-ray microtomography, based on single-distance phase contrast and combined with motion analysis, to examine the course of embryonic development. We demonstrate that this powerful four-dimensional imaging technique provides high-resolution views of gastrulation processes in wild-type X. laevis embryos, including vegetal endoderm rotation, archenteron formation, changes in the volumes of cavities within the porous interstitial tissue between archenteron and blastocoel, migration/confrontation of mesendoderm and closure of the blastopore. Differential flow analysis separates collective from relative cell motion to assign propulsion mechanisms. Moreover, digitally determined volume balances confirm that early archenteron inflation occurs through the uptake of external water. A transient ectodermal ridge, formed in association with the confrontation of ventral and head mesendoderm on the blastocoel roof, is identified. When combined with perturbation experiments to investigate molecular and biomechanical underpinnings of morphogenesis, our technique should help to advance our understanding of the fundamentals of development.


Asunto(s)
Gastrulación/fisiología , Microtomografía por Rayos X/métodos , Xenopus laevis/embriología , Animales , Evolución Biológica , Movimiento Celular , Endodermo/embriología , Cabeza/embriología , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Mesodermo/embriología , Morfogénesis , Movimiento , Rotación , Factores de Tiempo , Microtomografía por Rayos X/instrumentación , Xenopus laevis/anatomía & histología
17.
Opt Express ; 20(6): 6496-508, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22418532

RESUMEN

Synchrotron laminography is combined with Talbot grating interferometry to address weakly absorbing specimens. Integrating both methods into one set-up provides a powerful x-ray diagnostical technique for multiple contrast screening of macroscopically large flat specimen and a subsequent non-destructive three-dimensional (3-D) inspection of regions of interest. The technique simultaneously yields the reconstruction of the 3-D absorption, phase, and the so-called dark-field contrast maps. We report on the theoretical and instrumental implementation of of this novel technique. Its broad application potential is exemplarily demonstrated for the field of cultural heritage, namely study of the historical Dead Sea parchment.


Asunto(s)
Interferometría/instrumentación , Modelos Teóricos , Refractometría/instrumentación , Sincrotrones/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
18.
Opt Express ; 19(13): 12066-73, 2011 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-21716442

RESUMEN

For coherent X-ray imaging of pure phase objects we study the reliability of linear relations in phase-retrieval algorithms based on a single intensity map after free-space propagation. For large phase changes and/or large propagation distances we propose two venues of working beyond linearity: Projection onto an effective, linear and local model in Fourier space and expansion of intensity contrast in powers of object-detector distance. We apply both algorithms successfully to simulated data.


Asunto(s)
Algoritmos , Dinámicas no Lineales , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía por Rayos X/métodos , Animales , Análisis de Fourier , Modelos Lineales , Sincrotrones , Xenopus
19.
Opt Express ; 19(27): 25881-90, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-22274176

RESUMEN

We investigate why in free-space propagation single-distance phase retrieval based on a modified contrast-transfer function of linearized Fresnel theory yields good results for moderately strong pure-phase objects. Upscaling phase-variations in the exit plane, the growth of maxima of the modulus of the Fourier transformed intensity contrast dominates the minima. Cutting out small regions around the latter thus keeps information loss due to nonlocal, nonlinear effects negligible. This quasiparticle approach breaks down at a critical upscaling where the positions of the minima start to move rapidly. We apply our results to X-ray data of an early-stage Xenopus (frog) embryo.


Asunto(s)
Modelos Teóricos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Refractometría/métodos , Simulación por Computador , Análisis de Fourier , Luz , Dispersión de Radiación
20.
Opt Express ; 18(25): 25771-85, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-21164922

RESUMEN

Phase contrast in the object plane of a phase object is retrieved from intensity contrast at a {\sl single} object-detector distance. Expanding intensity contrast and phase shift in the detector plane in powers of object-detector distance, phase retrieval is performed beyond the solution to the linearized transport-of-intensity equation. The expansion coefficients are determined by the entire paraxial wave equation. The Laplacian of the phase shift in the object plane thus is written as a local expression linear in the intensity contrast and nonlinear in the phase shift in the object plane. A perturbative approach to this expression is proposed and tested with simulated phantom data.


Asunto(s)
Algoritmos , Imagenología Tridimensional/métodos , Microscopía de Contraste de Fase/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Dinámicas no Lineales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...